Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30869
Τίτλος: A memetic ant colony optimization algorithm for the dynamic travelling salesman problem
Συγγραφείς: Mavrovouniotis, Michalis 
Yang, Shengxiang 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Adaptive inversion;Ant colony optimization;Dynamic optimization problem;Inver-over operator;Local search;Memetic algorithm;Simple inversion;Travelling salesman problem
Ημερομηνία Έκδοσης: 1-Ιου-2011
Πηγή: Soft Computing, 2011, vol. 15, iss. 7, pp. 1405 - 1425
Volume: 15
Issue: 7
Start page: 1405
End page: 1425
Περιοδικό: Soft Computing 
Περίληψη: Ant colony optimization (ACO) has been successfully applied for combinatorial optimization problems, e.g., the travelling salesman problem (TSP), under stationary environments. In this paper, we consider the dynamic TSP (DTSP), where cities are replaced by new ones during the execution of the algorithm. Under such environments, traditional ACO algorithms face a serious challenge: once they converge, they cannot adapt efficiently to environmental changes. To improve the performance of ACO on the DTSP, we investigate a hybridized ACO with local search (LS), called Memetic ACO (M-ACO) algorithm, which is based on the population-based ACO (P-ACO) framework and an adaptive inver-over operator, to solve the DTSP. Moreover, to address premature convergence, we introduce random immigrants to the population of M-ACO when identical ants are stored. The simulation experiments on a series of dynamic environments generated from a set of benchmark TSP instances show that LS is beneficial for ACO algorithms when applied on the DTSP, since it achieves better performance than other traditional ACO and P-ACO algorithms. © 2010 Springer-Verlag.
URI: https://hdl.handle.net/20.500.14279/30869
ISSN: 14327643
DOI: 10.1007/s00500-010-0680-1
Rights: © Springer-Verlag
Type: Article
Affiliation: University of Leicester 
Brunel University London 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 5

85
checked on 14 Μαρ 2024

Page view(s) 20

89
Last Week
1
Last month
1
checked on 3 Ιαν 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα