Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30869
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-28T11:00:58Z-
dc.date.available2023-11-28T11:00:58Z-
dc.date.issued2011-07-01-
dc.identifier.citationSoft Computing, 2011, vol. 15, iss. 7, pp. 1405 - 1425en_US
dc.identifier.issn14327643-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30869-
dc.description.abstractAnt colony optimization (ACO) has been successfully applied for combinatorial optimization problems, e.g., the travelling salesman problem (TSP), under stationary environments. In this paper, we consider the dynamic TSP (DTSP), where cities are replaced by new ones during the execution of the algorithm. Under such environments, traditional ACO algorithms face a serious challenge: once they converge, they cannot adapt efficiently to environmental changes. To improve the performance of ACO on the DTSP, we investigate a hybridized ACO with local search (LS), called Memetic ACO (M-ACO) algorithm, which is based on the population-based ACO (P-ACO) framework and an adaptive inver-over operator, to solve the DTSP. Moreover, to address premature convergence, we introduce random immigrants to the population of M-ACO when identical ants are stored. The simulation experiments on a series of dynamic environments generated from a set of benchmark TSP instances show that LS is beneficial for ACO algorithms when applied on the DTSP, since it achieves better performance than other traditional ACO and P-ACO algorithms. © 2010 Springer-Verlag.en_US
dc.language.isoenen_US
dc.relation.ispartofSoft Computingen_US
dc.rights© Springer-Verlagen_US
dc.subjectAdaptive inversionen_US
dc.subjectAnt colony optimizationen_US
dc.subjectDynamic optimization problemen_US
dc.subjectInver-over operatoren_US
dc.subjectLocal searchen_US
dc.subjectMemetic algorithmen_US
dc.subjectSimple inversionen_US
dc.subjectTravelling salesman problemen_US
dc.titleA memetic ant colony optimization algorithm for the dynamic travelling salesman problemen_US
dc.typeArticleen_US
dc.collaborationUniversity of Leicesteren_US
dc.collaborationBrunel University Londonen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1007/s00500-010-0680-1en_US
dc.identifier.scopus2-s2.0-79958034622en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/79958034622en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue7en_US
dc.relation.volume15en_US
cut.common.academicyear2011-2012en_US
dc.identifier.spage1405en_US
dc.identifier.epage1425en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.journal.journalissn1433-7479-
crisitem.journal.publisherSpringer Nature-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 5

85
checked on Mar 14, 2024

Page view(s) 20

89
Last Week
1
Last month
1
checked on Jan 3, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.