Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/30869
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mavrovouniotis, Michalis | - |
dc.contributor.author | Yang, Shengxiang | - |
dc.date.accessioned | 2023-11-28T11:00:58Z | - |
dc.date.available | 2023-11-28T11:00:58Z | - |
dc.date.issued | 2011-07-01 | - |
dc.identifier.citation | Soft Computing, 2011, vol. 15, iss. 7, pp. 1405 - 1425 | en_US |
dc.identifier.issn | 14327643 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/30869 | - |
dc.description.abstract | Ant colony optimization (ACO) has been successfully applied for combinatorial optimization problems, e.g., the travelling salesman problem (TSP), under stationary environments. In this paper, we consider the dynamic TSP (DTSP), where cities are replaced by new ones during the execution of the algorithm. Under such environments, traditional ACO algorithms face a serious challenge: once they converge, they cannot adapt efficiently to environmental changes. To improve the performance of ACO on the DTSP, we investigate a hybridized ACO with local search (LS), called Memetic ACO (M-ACO) algorithm, which is based on the population-based ACO (P-ACO) framework and an adaptive inver-over operator, to solve the DTSP. Moreover, to address premature convergence, we introduce random immigrants to the population of M-ACO when identical ants are stored. The simulation experiments on a series of dynamic environments generated from a set of benchmark TSP instances show that LS is beneficial for ACO algorithms when applied on the DTSP, since it achieves better performance than other traditional ACO and P-ACO algorithms. © 2010 Springer-Verlag. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Soft Computing | en_US |
dc.rights | © Springer-Verlag | en_US |
dc.subject | Adaptive inversion | en_US |
dc.subject | Ant colony optimization | en_US |
dc.subject | Dynamic optimization problem | en_US |
dc.subject | Inver-over operator | en_US |
dc.subject | Local search | en_US |
dc.subject | Memetic algorithm | en_US |
dc.subject | Simple inversion | en_US |
dc.subject | Travelling salesman problem | en_US |
dc.title | A memetic ant colony optimization algorithm for the dynamic travelling salesman problem | en_US |
dc.type | Article | en_US |
dc.collaboration | University of Leicester | en_US |
dc.collaboration | Brunel University London | en_US |
dc.subject.category | Computer and Information Sciences | en_US |
dc.journals | Subscription | en_US |
dc.country | United Kingdom | en_US |
dc.subject.field | Natural Sciences | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1007/s00500-010-0680-1 | en_US |
dc.identifier.scopus | 2-s2.0-79958034622 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/79958034622 | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.relation.issue | 7 | en_US |
dc.relation.volume | 15 | en_US |
cut.common.academicyear | 2011-2012 | en_US |
dc.identifier.spage | 1405 | en_US |
dc.identifier.epage | 1425 | en_US |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.journal.journalissn | 1433-7479 | - |
crisitem.journal.publisher | Springer Nature | - |
crisitem.author.orcid | 0000-0002-5281-4175 | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
5
85
checked on Mar 14, 2024
Page view(s) 20
89
Last Week
1
1
Last month
1
1
checked on Jan 3, 2025
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.