Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30863
Τίτλος: Ant colony optimization algorithms with immigrants schemes for the dynamic travelling salesman problem
Συγγραφείς: Mavrovouniotis, Michalis 
Yang, Shengxiang 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Ant colony;immigrants schemes;salesman problem
Ημερομηνία Έκδοσης: 1-Ιαν-2013
Πηγή: Studies in Computational Intelligence, 2013, vol. 490, pp. 317 - 341
Volume: 490
Start page: 317
End page: 341
Περιοδικό: Studies in Computational Intelligence 
Περίληψη: Ant colony optimization (ACO) algorithms have proved to be powerful methods to address dynamic optimization problems (DOPs). However, once the population converges to a solution and a dynamic change occurs, it is difficult for the population to adapt to the new environment since high levels of pheromone will be generated to a single trail and force the ants to follow it even after a dynamic change. A good solution is to maintain the diversity via transferring knowledge from previous environments to the pheromone trails using immigrants. In this chapter, we investigate ACO algorithms with different immigrants schemes for two types of dynamic travelling salesman problems (DTSPs) with traffic factor, i.e., under random and cyclic dynamic changes. The experimental results based on different DTSP test cases show that the investigated algorithms outperform other peer ACO algorithms and that different immigrants schemes are beneficial on different environmental cases. © 2013 Springer-Verlag Berlin Heidelberg.
URI: https://hdl.handle.net/20.500.14279/30863
ISBN: 9783642384158
ISSN: 1860949X
DOI: 10.1007/978-3-642-38416-5_13
Rights: © Springer-Verlag Berlin Heidelberg
Type: Article
Affiliation: De Montfort University 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

7
checked on 14 Μαρ 2024

Page view(s)

78
Last Week
0
Last month
3
checked on 7 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα