Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30862
Τίτλος: Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors
Συγγραφείς: Mavrovouniotis, Michalis 
Yang, Shengxiang 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Ant colony optimization;Dynamic optimization problem;Dynamic travelling salesman problem;Immigrants schemes;Traffic factor
Ημερομηνία Έκδοσης: 1-Ιαν-2013
Πηγή: Applied Soft Computing Journal, 2013, vol. 13, iss. 10, pp. 4023 - 4037
Volume: 13
Issue: 10
Start page: 4023
End page: 4037
Περιοδικό: Applied Soft Computing Journal 
Περίληψη: Traditional ant colony optimization (ACO) algorithms have difficulty in addressing dynamic optimization problems (DOPs). This is because once the algorithm converges to a solution and a dynamic change occurs, it is difficult for the population to adapt to a new environment since high levels of pheromone will be generated to a single trail and force the ants to follow it even after a dynamic change. A good solution to address this problem is to increase the diversity via transferring knowledge from previous environments to the pheromone trails using immigrants schemes. In this paper, an ACO framework for dynamic environments is proposed where different immigrants schemes, including random immigrants, elitism-based immigrants, and memory-based immigrants, are integrated into ACO algorithms for solving DOPs. From this framework, three ACO algorithms, where immigrant ants are generated using the aforementioned immigrants schemes and replace existing ants in the current population, are proposed and investigated. Moreover, two novel types of dynamic travelling salesman problems (DTSPs) with traffic factors, i.e., under random and cyclic dynamic environments, are proposed for the experimental study. The experimental results based on different DTSP test cases show that each proposed algorithm performs well on different environmental cases and that the proposed algorithms outperform several other peer ACO algorithms. © 2013 Elsevier B.V. All rights reserved.
URI: https://hdl.handle.net/20.500.14279/30862
ISSN: 15684946
DOI: 10.1016/j.asoc.2013.05.022
Rights: © Elsevier
Type: Article
Affiliation: De Montfort University 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

134
checked on 14 Μαρ 2024

Page view(s) 20

109
Last Week
1
Last month
8
checked on 25 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα