Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/30851
Τίτλος: | Training neural networks with ant colony optimization algorithms for pattern classification | Συγγραφείς: | Mavrovouniotis, Michalis Yang, Shengxiang |
Major Field of Science: | Natural Sciences | Field Category: | Computer and Information Sciences | Λέξεις-κλειδιά: | Ant colony optimization;Neural networks;Pattern classification | Ημερομηνία Έκδοσης: | 18-Ιου-2015 | Πηγή: | Soft Computing, 2015, vol. 19, iss. 6, pp. 1511 - 1522 | Volume: | 19 | Issue: | 6 | Start page: | 1511 | End page: | 1522 | Περιοδικό: | Soft Computing | Περίληψη: | Feed-forward neural networks are commonly used for pattern classification. The classification accuracy of feed-forward neural networks depends on the configuration selected and the training process. Once the architecture of the network is decided, training algorithms, usually gradient descent techniques, are used to determine the connection weights of the feed-forward neural network. However, gradient descent techniques often get trapped in local optima of the search landscape. To address this issue, an ant colony optimization (ACO) algorithm is applied to train feed-forward neural networks for pattern classification in this paper. In addition, the ACO training algorithm is hybridized with gradient descent training. Both standalone and hybrid ACO training algorithms are evaluated on several benchmark pattern classification problems, and compared with other swarm intelligence, evolutionary and traditional training algorithms. The experimental results show the efficiency of the proposed ACO training algorithms for feed-forward neural networks for pattern classification. | URI: | https://hdl.handle.net/20.500.14279/30851 | ISSN: | 14327643 | DOI: | 10.1007/s00500-014-1334-5 | Rights: | © Springer | Type: | Article | Affiliation: | De Montfort University | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
20
79
checked on 14 Μαρ 2024
Page view(s)
96
Last Week
1
1
Last month
9
9
checked on 22 Δεκ 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα