Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30851
Τίτλος: Training neural networks with ant colony optimization algorithms for pattern classification
Συγγραφείς: Mavrovouniotis, Michalis 
Yang, Shengxiang 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Ant colony optimization;Neural networks;Pattern classification
Ημερομηνία Έκδοσης: 18-Ιου-2015
Πηγή: Soft Computing, 2015, vol. 19, iss. 6, pp. 1511 - 1522
Volume: 19
Issue: 6
Start page: 1511
End page: 1522
Περιοδικό: Soft Computing 
Περίληψη: Feed-forward neural networks are commonly used for pattern classification. The classification accuracy of feed-forward neural networks depends on the configuration selected and the training process. Once the architecture of the network is decided, training algorithms, usually gradient descent techniques, are used to determine the connection weights of the feed-forward neural network. However, gradient descent techniques often get trapped in local optima of the search landscape. To address this issue, an ant colony optimization (ACO) algorithm is applied to train feed-forward neural networks for pattern classification in this paper. In addition, the ACO training algorithm is hybridized with gradient descent training. Both standalone and hybrid ACO training algorithms are evaluated on several benchmark pattern classification problems, and compared with other swarm intelligence, evolutionary and traditional training algorithms. The experimental results show the efficiency of the proposed ACO training algorithms for feed-forward neural networks for pattern classification.
URI: https://hdl.handle.net/20.500.14279/30851
ISSN: 14327643
DOI: 10.1007/s00500-014-1334-5
Rights: © Springer
Type: Article
Affiliation: De Montfort University 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

79
checked on 14 Μαρ 2024

Page view(s)

96
Last Week
1
Last month
9
checked on 22 Δεκ 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα