Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30833
Τίτλος: Memory-based multi-population genetic learning for dynamic shortest path problems
Συγγραφείς: DIao, Yiya 
Li, Changhe 
Zeng, Sanyou 
Mavrovouniotis, Michalis 
Yang, Shengxiang 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: ant colony optimization;clusteringbased multi-population;dynamic sequence optimization;dynamic shortest path;genetic learning
Ημερομηνία Έκδοσης: 10-Ιου-2019
Πηγή: 2019 IEEE Congress on Evolutionary Computation, CEC 2019, Wellington, New Zealand, 10 - 13 June 2019
Conference: 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings 
Περίληψη: This paper proposes a general algorithm framework for solving dynamic sequence optimization problems (DSOPs). The framework adapts a novel genetic learning (GL) algorithm to dynamic environments via a clustering-based multi-population strategy with a memory scheme, namely, multi-population GL (MPGL). The framework is instantiated for a 3D dynamic shortest path problem, which is developed in this paper. Experimental comparison studies show that MPGL is able to quickly adapt to new environments and it outperforms several ant colony optimization variants.
URI: https://hdl.handle.net/20.500.14279/30833
ISBN: 9781728121536
DOI: 10.1109/CEC.2019.8790211
Rights: © IEEE
Type: Conference Papers
Affiliation: China University of Geosciences 
Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems 
China University of Geosciences 
University of Cyprus 
De Montfort University 
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

5
checked on 14 Μαρ 2024

Page view(s)

100
Last Week
0
Last month
1
checked on 8 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα