Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/30833
Τίτλος: | Memory-based multi-population genetic learning for dynamic shortest path problems | Συγγραφείς: | DIao, Yiya Li, Changhe Zeng, Sanyou Mavrovouniotis, Michalis Yang, Shengxiang |
Major Field of Science: | Natural Sciences | Field Category: | Computer and Information Sciences | Λέξεις-κλειδιά: | ant colony optimization;clusteringbased multi-population;dynamic sequence optimization;dynamic shortest path;genetic learning | Ημερομηνία Έκδοσης: | 10-Ιου-2019 | Πηγή: | 2019 IEEE Congress on Evolutionary Computation, CEC 2019, Wellington, New Zealand, 10 - 13 June 2019 | Conference: | 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings | Περίληψη: | This paper proposes a general algorithm framework for solving dynamic sequence optimization problems (DSOPs). The framework adapts a novel genetic learning (GL) algorithm to dynamic environments via a clustering-based multi-population strategy with a memory scheme, namely, multi-population GL (MPGL). The framework is instantiated for a 3D dynamic shortest path problem, which is developed in this paper. Experimental comparison studies show that MPGL is able to quickly adapt to new environments and it outperforms several ant colony optimization variants. | URI: | https://hdl.handle.net/20.500.14279/30833 | ISBN: | 9781728121536 | DOI: | 10.1109/CEC.2019.8790211 | Rights: | © IEEE | Type: | Conference Papers | Affiliation: | China University of Geosciences Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems China University of Geosciences University of Cyprus De Montfort University |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
20
5
checked on 14 Μαρ 2024
Page view(s)
100
Last Week
0
0
Last month
1
1
checked on 8 Νοε 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα