Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30828
Τίτλος: Ant colony optimization algorithms for dynamic optimization: A case study of the dynamic travelling salesperson problem [Research Frontier]
Συγγραφείς: Mavrovouniotis, Michalis 
Yang, Shengxiang 
Van, Mien 
Li, Changhe 
Polycarpou, Marios M. 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Artificial intelligence;Combinatorial optimization;Ant Colony Optimization algorithms;Combinatorial optimization problems
Ημερομηνία Έκδοσης: 1-Φεβ-2020
Πηγή: IEEE Computational Intelligence Magazine, 2020, vol. 15, iss. 1, pp. 52 - 63
Volume: 15
Issue: 1
Start page: 52
End page: 63
Περιοδικό: IEEE Computational Intelligence Magazine 
Περίληψη: Ant colony optimization is a swarm intelligence metaheuristic inspired by the foraging behavior of some ant species. Ant colony optimization has been successfully applied to challenging optimization problems. This article investigates existing ant colony optimization algorithms specifically designed for combinatorial optimization problems with a dynamic environment. The investigated algorithms are classified into two frameworks: evaporation-based and population-based. A case study of using these algorithms to solve the dynamic traveling salesperson problem is described. Experiments are systematically conducted using a proposed dynamic benchmark framework to analyze the effect of important ant colony optimization features on numerous test cases. Different performance measures are used to evaluate the adaptation capabilities of the investigated algorithms, indicating which features are the most important when designing ant colony optimization algorithms in dynamic environments.
URI: https://hdl.handle.net/20.500.14279/30828
ISSN: 1556603X
DOI: 10.1109/MCI.2019.2954644
Rights: © IEEE
Type: Article
Affiliation: University of Cyprus 
De Montfort University 
Queen’s University Belfast 
China University of Geosciences 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

37
checked on 14 Μαρ 2024

Page view(s)

106
Last Week
1
Last month
4
checked on 22 Δεκ 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα