Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/30487
Τίτλος: | Large sample size bias in empirical finance | Συγγραφείς: | Michaelides, Michael | Major Field of Science: | Social Sciences | Field Category: | Economics and Business | Λέξεις-κλειδιά: | Methodological crisis;Publication bias;Large sample size;High statistical power;Spurious statistical significance;Appropriate significance thresholds | Ημερομηνία Έκδοσης: | Ιου-2021 | Πηγή: | Finance Research Letters, vol. 41, 2021 | Volume: | 41 | Περιοδικό: | Finance Research Letters | Περίληψη: | The vast majority of empirical studies in finance employ large enough sample sizes and use the conventional thresholds for statistical significance. This routine practice can potentially lead to spurious statistically significant results. The primary aim of this paper is to present a rule of thumb that can be used to determine the appropriate thresholds for statistical significance for a given sample size. The paper argues that the list of statistically significant findings in the broader finance literature is likely to be much shorter after accounting for large sample size bias. | URI: | https://hdl.handle.net/20.500.14279/30487 | ISSN: | 15446123 | DOI: | 10.1016/j.frl.2020.101835 | Rights: | © Elsevier | Type: | Article | Affiliation: | Allegheny College | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
6
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
3
checked on 1 Νοε 2023
Page view(s)
159
Last Week
2
2
Last month
4
4
checked on 3 Φεβ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα