Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30487
DC FieldValueLanguage
dc.contributor.authorMichaelides, Michael-
dc.date.accessioned2023-09-22T11:48:31Z-
dc.date.available2023-09-22T11:48:31Z-
dc.date.issued2021-07-
dc.identifier.citationFinance Research Letters, vol. 41, 2021en_US
dc.identifier.issn15446123-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30487-
dc.description.abstractThe vast majority of empirical studies in finance employ large enough sample sizes and use the conventional thresholds for statistical significance. This routine practice can potentially lead to spurious statistically significant results. The primary aim of this paper is to present a rule of thumb that can be used to determine the appropriate thresholds for statistical significance for a given sample size. The paper argues that the list of statistically significant findings in the broader finance literature is likely to be much shorter after accounting for large sample size bias.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofFinance Research Lettersen_US
dc.rights© Elsevieren_US
dc.subjectMethodological crisisen_US
dc.subjectPublication biasen_US
dc.subjectLarge sample sizeen_US
dc.subjectHigh statistical poweren_US
dc.subjectSpurious statistical significanceen_US
dc.subjectAppropriate significance thresholdsen_US
dc.titleLarge sample size bias in empirical financeen_US
dc.typeArticleen_US
dc.collaborationAllegheny Collegeen_US
dc.subject.categoryEconomics and Businessen_US
dc.journalsSubscriptionen_US
dc.countryUnited Statesen_US
dc.subject.fieldSocial Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.frl.2020.101835en_US
dc.identifier.scopus2-s2.0-85096088601-
dc.identifier.urlhttp://dx.doi.org/10.1016/j.frl.2020.101835-
dc.relation.volume41en_US
cut.common.academicyear2021-2022en_US
dc.identifier.external142551182-
item.grantfulltextnone-
item.openairetypearticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptDepartment of Finance, Accounting and Management Science-
crisitem.author.facultyFaculty of Management and Economics-
crisitem.author.orcid0009-0009-6727-5563-
crisitem.author.parentorgFaculty of Management and Economics-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

6
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 1, 2023

Page view(s)

198
Last Week
1
Last month
11
checked on Apr 15, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.