Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/29907
Τίτλος: | Gap-Filling Sentinel-1 Offshore Wind Speed Image Time Series Using Multiple-Point Geostatistical Simulation and Reanalysis Data | Συγγραφείς: | Hadjipetrou, Stylianos Mariethoz, Gregoire Kyriakidis, Phaedon |
Major Field of Science: | Engineering and Technology | Field Category: | Civil Engineering | Λέξεις-κλειδιά: | geostatistical simulation;multiple-point statistics (MPS);multivariate patterns;spatiotemporal data;synthetic aperture radar (SAR) | Ημερομηνία Έκδοσης: | 1-Ιαν-2023 | Πηγή: | Remote Sensing, 2023, vol. 15, iss. 2 | Volume: | 15 | Issue: | 2 | Περίληψη: | Offshore wind is expected to play a key role in future energy systems. Wind energy resource studies often call for long-term and spatially consistent datasets to assess the wind potential. Despite the vast amount of available data sources, no current means can provide relevant sub-daily information at a fine spatial scale (~1 km). Synthetic aperture radar (SAR) delivers wind field estimates over the ocean at fine spatial resolution but suffers from partial coverage and irregular revisit times. Physical model outputs, which are the basis of reanalysis products, can be queried at any time step but lack fine-scale spatial variability. To combine the advantages of both, we use the framework of multiple-point geostatistics to realistically reconstruct wind speed patterns at time instances for which satellite information is absent. Synthetic fine-resolution wind speed images are generated conditioned to coregistered regional reanalysis information at a coarser scale. Available simultaneous data sources are used as training data to generate the synthetic image time series. The latter are then evaluated via cross validation and statistical comparison against reference satellite data. Multiple realizations are also generated to assess the uncertainty associated with the simulation outputs. Results show that the proposed methodology can realistically reproduce fine-scale spatiotemporal variability while honoring the wind speed patterns at the coarse scale and thus filling the satellite information gaps in space and time. | URI: | https://hdl.handle.net/20.500.14279/29907 | ISSN: | 20724292 | DOI: | 10.3390/rs15020409 | Rights: | © by the authors | Type: | Article | Affiliation: | Cyprus University of Technology University of Lausanne Geospatial Analytics Lab |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
phaedon 1.pdf | Full text | 12.17 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
SCOPUSTM
Citations
1
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
1
Last Week
0
0
Last month
0
0
checked on 1 Νοε 2023
Page view(s)
173
Last Week
0
0
Last month
1
1
checked on 6 Νοε 2024
Download(s)
72
checked on 6 Νοε 2024
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons