Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/29907
DC FieldValueLanguage
dc.contributor.authorHadjipetrou, Stylianos-
dc.contributor.authorMariethoz, Gregoire-
dc.contributor.authorKyriakidis, Phaedon-
dc.date.accessioned2023-07-20T06:08:07Z-
dc.date.available2023-07-20T06:08:07Z-
dc.date.issued2023-01-01-
dc.identifier.citationRemote Sensing, 2023, vol. 15, iss. 2en_US
dc.identifier.issn20724292-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/29907-
dc.description.abstractOffshore wind is expected to play a key role in future energy systems. Wind energy resource studies often call for long-term and spatially consistent datasets to assess the wind potential. Despite the vast amount of available data sources, no current means can provide relevant sub-daily information at a fine spatial scale (~1 km). Synthetic aperture radar (SAR) delivers wind field estimates over the ocean at fine spatial resolution but suffers from partial coverage and irregular revisit times. Physical model outputs, which are the basis of reanalysis products, can be queried at any time step but lack fine-scale spatial variability. To combine the advantages of both, we use the framework of multiple-point geostatistics to realistically reconstruct wind speed patterns at time instances for which satellite information is absent. Synthetic fine-resolution wind speed images are generated conditioned to coregistered regional reanalysis information at a coarser scale. Available simultaneous data sources are used as training data to generate the synthetic image time series. The latter are then evaluated via cross validation and statistical comparison against reference satellite data. Multiple realizations are also generated to assess the uncertainty associated with the simulation outputs. Results show that the proposed methodology can realistically reproduce fine-scale spatiotemporal variability while honoring the wind speed patterns at the coarse scale and thus filling the satellite information gaps in space and time.en_US
dc.language.isoenen_US
dc.rights© by the authorsen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectgeostatistical simulationen_US
dc.subjectmultiple-point statistics (MPS)en_US
dc.subjectmultivariate patternsen_US
dc.subjectspatiotemporal dataen_US
dc.subjectsynthetic aperture radar (SAR)en_US
dc.titleGap-Filling Sentinel-1 Offshore Wind Speed Image Time Series Using Multiple-Point Geostatistical Simulation and Reanalysis Dataen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Lausanneen_US
dc.collaborationGeospatial Analytics Laben_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsOpen Accessen_US
dc.countrySwitzerlanden_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.3390/rs15020409en_US
dc.identifier.scopus2-s2.0-85146615816-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85146615816-
dc.relation.issue2en_US
dc.relation.volume15en_US
cut.common.academicyear2022-2023en_US
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-8808-3319-
crisitem.author.orcid0000-0003-4222-8567-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
phaedon 1.pdfFull text12.17 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

1
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on Nov 1, 2023

Page view(s)

176
Last Week
0
Last month
5
checked on Dec 22, 2024

Download(s)

74
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons