Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/29778
Τίτλος: | Embedding-aided network dismantling | Συγγραφείς: | Osat, Saeed Papadopoulos, Fragkiskos Teixeira, Andreia Sofia Radicchi, Filippo |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Network embeddings;Solvents;Connected component;Cost strategies;Cost-function;Embeddings;Euclidean network;Geometric space | Ημερομηνία Έκδοσης: | 1-Ιαν-2023 | Πηγή: | Physical Review Research, 2023, vol. 5, iss. 1 | Volume: | 5 | Issue: | 1 | Περίληψη: | Optimal percolation concerns the identification of the minimum-cost strategy for the destruction of any extensive connected components in a network. Solutions of such a dismantling problem are important for the design of optimal strategies of disease containment based either on immunization or social distancing. Depending on the specific variant of the problem considered, network dismantling is performed via the removal of nodes or edges, and different cost functions are associated to the removal of these microscopic elements. In this paper, we show that network representations in geometric space can be used to solve several variants of the network dismantling problem in a coherent fashion. Once a network is embedded, dismantling is implemented using intuitive geometric strategies. We demonstrate that the approach well suits both Euclidean and hyperbolic network embeddings. Our systematic analysis on synthetic and real networks demonstrates that the performance of embedding-aided techniques is comparable to, if not better than, the one of the best dismantling algorithms currently available on the market. | URI: | https://hdl.handle.net/20.500.14279/29778 | ISSN: | 26431564 | DOI: | 10.1103/PhysRevResearch.5.013076 | Rights: | © Elsevier B.V. Attribution-NonCommercial-NoDerivatives 4.0 International |
Type: | Article | Affiliation: | Max Planck Institute for Dynamics and Self-Organization Cyprus University of Technology University of Lisbon Indiana University |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
20
3
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
1
Last Week
0
0
Last month
checked on 29 Οκτ 2023
Page view(s) 20
197
Last Week
1
1
Last month
8
8
checked on 30 Ιαν 2025
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons