Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/29778
DC FieldValueLanguage
dc.contributor.authorOsat, Saeed-
dc.contributor.authorPapadopoulos, Fragkiskos-
dc.contributor.authorTeixeira, Andreia Sofia-
dc.contributor.authorRadicchi, Filippo-
dc.date.accessioned2023-07-11T09:41:57Z-
dc.date.available2023-07-11T09:41:57Z-
dc.date.issued2023-01-01-
dc.identifier.citationPhysical Review Research, 2023, vol. 5, iss. 1en_US
dc.identifier.issn26431564-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/29778-
dc.description.abstractOptimal percolation concerns the identification of the minimum-cost strategy for the destruction of any extensive connected components in a network. Solutions of such a dismantling problem are important for the design of optimal strategies of disease containment based either on immunization or social distancing. Depending on the specific variant of the problem considered, network dismantling is performed via the removal of nodes or edges, and different cost functions are associated to the removal of these microscopic elements. In this paper, we show that network representations in geometric space can be used to solve several variants of the network dismantling problem in a coherent fashion. Once a network is embedded, dismantling is implemented using intuitive geometric strategies. We demonstrate that the approach well suits both Euclidean and hyperbolic network embeddings. Our systematic analysis on synthetic and real networks demonstrates that the performance of embedding-aided techniques is comparable to, if not better than, the one of the best dismantling algorithms currently available on the market.en_US
dc.language.isoenen_US
dc.rights© Elsevier B.V.en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNetwork embeddingsen_US
dc.subjectSolventsen_US
dc.subjectConnected componenten_US
dc.subjectCost strategiesen_US
dc.subjectCost-functionen_US
dc.subjectEmbeddingsen_US
dc.subjectEuclidean networken_US
dc.subjectGeometric spaceen_US
dc.titleEmbedding-aided network dismantlingen_US
dc.typeArticleen_US
dc.collaborationMax Planck Institute for Dynamics and Self-Organizationen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Lisbonen_US
dc.collaborationIndiana Universityen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryGermanyen_US
dc.countryCyprusen_US
dc.countryPortugalen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1103/PhysRevResearch.5.013076en_US
dc.identifier.scopus2-s2.0-85148328481-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85148328481-
dc.relation.issue1en_US
dc.relation.volume5en_US
cut.common.academicyear2022-2023en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4072-5781-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

3
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
checked on Oct 29, 2023

Page view(s) 20

176
Last Week
1
Last month
5
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons