Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/29615
Τίτλος: | Unsupervised Labor Intelligence Systems: A Detection Approach and Its Evaluation: A Case Study in the Netherlands | Συγγραφείς: | Cascavilla, Giuseppe Catolino, Gemma Palomba, Fabio Andreou, Andreas S. Tamburri, Damian A. Van Den Heuvel, Willem Jan |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Artificial Intelligence;Case study;Data science | Ημερομηνία Έκδοσης: | 3-Ιου-2022 | Πηγή: | 16th Symposium and Summer School on Service-Oriented Computing, 3 - 9 July 2022, Hersonissos | Volume: | 1603 CCIS | Start page: | 79 | End page: | 98 | Conference: | Communications in Computer and Information Science | Περίληψη: | In recent years, job advertisements through the web or social media represent an easy way to spread this information. However, social media are often a dangerous showcase of possibly labor exploitation advertisements. This paper aims to determine the potential indicators of labor exploitation for unskilled jobs offered in the Netherlands. Specifically, we exploited topic modeling to extract and handle information from textual data about job advertisements for analyzing deceptive and characterizing features. Finally, we use these features to investigate whether automated machine learning methods can predict the risk of labor exploitation by looking at salary discrepancies. The results suggest that features need to be carefully monitored, e.g., hours. Finally, our results showed encouraging results, i.e., F1-Score 61%, thus meaning that Data Science methods and Artificial Intelligence approaches can be used to detect labor exploitation—starting from job advertisements—based on the discrepancy of delta salary, possibly representing a revolutionary step. | Description: | Book series, vol.1603 CCIS, pp. 79 - 98 | URI: | https://hdl.handle.net/20.500.14279/29615 | ISBN: | 9783031183034 | ISSN: | 18650929 | DOI: | 10.1007/978-3-031-18304-1_5 | Rights: | © The Author(s) Attribution-NonCommercial-NoDerivatives 4.0 International |
Type: | Conference Papers | Affiliation: | Jheronimus Academy of Data Science Eindhoven University of Technology Tilburg University Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
978-3-031-18304-1.pdf | Full text | 10.08 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
Page view(s) 10
145
Last Week
1
1
Last month
3
3
checked on 25 Νοε 2024
Download(s) 10
1.078
checked on 25 Νοε 2024
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons