Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/29615
DC FieldValueLanguage
dc.contributor.authorCascavilla, Giuseppe-
dc.contributor.authorCatolino, Gemma-
dc.contributor.authorPalomba, Fabio-
dc.contributor.authorAndreou, Andreas S.-
dc.contributor.authorTamburri, Damian A.-
dc.contributor.authorVan Den Heuvel, Willem Jan-
dc.date.accessioned2023-07-04T08:38:36Z-
dc.date.available2023-07-04T08:38:36Z-
dc.date.issued2022-07-03-
dc.identifier.citation16th Symposium and Summer School on Service-Oriented Computing, 3 - 9 July 2022, Hersonissosen_US
dc.identifier.isbn9783031183034-
dc.identifier.issn18650929-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/29615-
dc.descriptionBook series, vol.1603 CCIS, pp. 79 - 98en_US
dc.description.abstractIn recent years, job advertisements through the web or social media represent an easy way to spread this information. However, social media are often a dangerous showcase of possibly labor exploitation advertisements. This paper aims to determine the potential indicators of labor exploitation for unskilled jobs offered in the Netherlands. Specifically, we exploited topic modeling to extract and handle information from textual data about job advertisements for analyzing deceptive and characterizing features. Finally, we use these features to investigate whether automated machine learning methods can predict the risk of labor exploitation by looking at salary discrepancies. The results suggest that features need to be carefully monitored, e.g., hours. Finally, our results showed encouraging results, i.e., F1-Score 61%, thus meaning that Data Science methods and Artificial Intelligence approaches can be used to detect labor exploitation—starting from job advertisements—based on the discrepancy of delta salary, possibly representing a revolutionary step.en_US
dc.language.isoenen_US
dc.rights© The Author(s)en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArtificial Intelligenceen_US
dc.subjectCase studyen_US
dc.subjectData scienceen_US
dc.titleUnsupervised Labor Intelligence Systems: A Detection Approach and Its Evaluation: A Case Study in the Netherlandsen_US
dc.typeConference Papersen_US
dc.collaborationJheronimus Academy of Data Scienceen_US
dc.collaborationEindhoven University of Technologyen_US
dc.collaborationTilburg Universityen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.countryNetherlandsen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceCommunications in Computer and Information Scienceen_US
dc.identifier.doi10.1007/978-3-031-18304-1_5en_US
dc.identifier.scopus2-s2.0-85140740555-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85140740555-
dc.relation.volume1603 CCISen_US
cut.common.academicyear2021-2022en_US
dc.identifier.spage79en_US
dc.identifier.epage98en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.languageiso639-1en-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-7104-2097-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
Files in This Item:
File Description SizeFormat
978-3-031-18304-1.pdfFull text10.08 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

Page view(s)

145
Last Week
2
Last month
3
checked on Nov 22, 2024

Download(s) 5

1,078
checked on Nov 22, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons