Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/29138
Τίτλος: | Multi-scale seagrass mapping in satellite data and the use of UAS in accuracy assessment | Συγγραφείς: | Makri, Despina Stamatis, Panagiotis Doukari, Michaela Papakonstantinou, Apostolos Vasilakos, Christos Topouzelis, Konstantinos |
Major Field of Science: | Engineering and Technology | Field Category: | Other Engineering and Technologies | Ημερομηνία Έκδοσης: | 1-Ιαν-2018 | Πηγή: | Proceedings of SPIE - The International Society for Optical Engineering | Volume: | 10773 | Conference: | Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018) | Περίληψη: | Seagrass meadows play a vital role in coastal ecosystems health as constitute an important pillar of the coastal environment. So far, regional scale habitat mapping was implemented with the use of freely available medium scale satellite images (Sentinel-2 or Landsat-8). The Unmanned Aerial Systems (UAS) have increase the spatial resolution of the observation from meter to sub-decimeter. Using sub-decimeter imagery, seagrass can be mapped in great detail revealing significant habitat species and detect new habitat patterns. In the present study, we suggest a multi-scale image analysis methodology consisting of georeferencing, atmospheric and water column correction and Object-Based Image Analysis (OBIA). OBIA process is performed using nearest neighborhood and fuzzy rules as classifiers in three major classes, a) seagrass, b) shallow areas with soft bottom and c) shallow areas with hard bottom (reefs). UAS very high-resolution data treated as in situ observations and used for training the classifiers and for accuracy assessment. The methodology applied in two satellite images Sentinel-2 and Landsat-8 with 10m and 30m spatial resolution respectively, at Livadi beach, Folegandros Island, Greece. The results show better classification accuracies in Sentinel-2 data than in Landsat-8. There was a great difficulty in the detection of the reef habitat in satellite images because it covered a small area. Reef habitat was clearly detected only in the UAS data. In conclusion, the present study highlights the necessity of new high precision geospatial data for examining the habitat detection accuracies on satellite images of different resolutions. | URI: | https://hdl.handle.net/20.500.14279/29138 | ISBN: | 9781510621176 | ISSN: | 0277786X | DOI: | 10.1117/12.2326012 | Type: | Conference Papers | Affiliation: | University of the Aegean | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
50
5
checked on 14 Μαρ 2024
Page view(s) 50
166
Last Week
0
0
Last month
3
3
checked on 3 Φεβ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα