Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/29138
DC FieldValueLanguage
dc.contributor.authorMakri, Despina-
dc.contributor.authorStamatis, Panagiotis-
dc.contributor.authorDoukari, Michaela-
dc.contributor.authorPapakonstantinou, Apostolos-
dc.contributor.authorVasilakos, Christos-
dc.contributor.authorTopouzelis, Konstantinos-
dc.date.accessioned2023-05-02T06:46:49Z-
dc.date.available2023-05-02T06:46:49Z-
dc.date.issued2018-01-01-
dc.identifier.citationProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.identifier.isbn9781510621176-
dc.identifier.issn0277786X-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/29138-
dc.description.abstractSeagrass meadows play a vital role in coastal ecosystems health as constitute an important pillar of the coastal environment. So far, regional scale habitat mapping was implemented with the use of freely available medium scale satellite images (Sentinel-2 or Landsat-8). The Unmanned Aerial Systems (UAS) have increase the spatial resolution of the observation from meter to sub-decimeter. Using sub-decimeter imagery, seagrass can be mapped in great detail revealing significant habitat species and detect new habitat patterns. In the present study, we suggest a multi-scale image analysis methodology consisting of georeferencing, atmospheric and water column correction and Object-Based Image Analysis (OBIA). OBIA process is performed using nearest neighborhood and fuzzy rules as classifiers in three major classes, a) seagrass, b) shallow areas with soft bottom and c) shallow areas with hard bottom (reefs). UAS very high-resolution data treated as in situ observations and used for training the classifiers and for accuracy assessment. The methodology applied in two satellite images Sentinel-2 and Landsat-8 with 10m and 30m spatial resolution respectively, at Livadi beach, Folegandros Island, Greece. The results show better classification accuracies in Sentinel-2 data than in Landsat-8. There was a great difficulty in the detection of the reef habitat in satellite images because it covered a small area. Reef habitat was clearly detected only in the UAS data. In conclusion, the present study highlights the necessity of new high precision geospatial data for examining the habitat detection accuracies on satellite images of different resolutions.en_US
dc.language.isoenen_US
dc.titleMulti-scale seagrass mapping in satellite data and the use of UAS in accuracy assessmenten_US
dc.typeConference Papersen_US
dc.collaborationUniversity of the Aegeanen_US
dc.subject.categoryOther Engineering and Technologiesen_US
dc.journalsSubscriptionen_US
dc.countryGreeceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceSixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018)en_US
dc.identifier.doi10.1117/12.2326012en_US
dc.identifier.scopus2-s2.0-85052699935en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85052699935en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.volume10773en_US
cut.common.academicyear2018-2019en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0009-0002-6217-9328-
crisitem.author.orcid0000-0002-6464-2008-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

5
checked on Mar 14, 2024

Page view(s) 50

166
Last Week
0
Last month
3
checked on Feb 3, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.