Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/29066
Τίτλος: | A feature-subspace-based ensemble method for estimating long-term voltage stability margins | Συγγραφείς: | Khurram, Ambreen Gusnanto, Arief Aristidou, Petros |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Online voltage stability;Bayesian optimization;Machine learning | Ημερομηνία Έκδοσης: | Νοε-2022 | Πηγή: | Electric Power Systems Research, 2022, vol. 212, articl. no. 108481 | Volume: | 212 | Περιοδικό: | Electric Power Systems Research | Περίληψη: | This study proposes a methodology for online voltage stability monitoring using a feature subspace based ensemble approach. The overall idea is to use the input from varied feature selectors for the ensemble and aggregate their outputs. This approach is superior to conventional feature selection methods because it can handle stability issues that are usually poor in existing feature selection methods and improve performance. The selected features are used as an input to three different regression algorithms to enable online voltage stability monitoring. A Bayesian optimization technique is used to tune machine learning (ML) models’ hyper-parameters and determine the optimal number of features. The proposed approach is evaluated in experiments using simulated data from the Nordic test system. The simulation results have shown that the proposed method efficiently predicts the status of dynamic voltage stability in the test system. | URI: | https://hdl.handle.net/20.500.14279/29066 | ISSN: | 18732046 | DOI: | 10.1016/j.epsr.2022.108481 | Rights: | © Elsevier | Type: | Article | Affiliation: | Cyprus University of Technology University of Leeds |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
1
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
1
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
182
Last Week
2
2
Last month
5
5
checked on 2 Φεβ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα