Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/29066
DC FieldValueLanguage
dc.contributor.authorKhurram, Ambreen-
dc.contributor.authorGusnanto, Arief-
dc.contributor.authorAristidou, Petros-
dc.date.accessioned2023-04-20T18:55:15Z-
dc.date.available2023-04-20T18:55:15Z-
dc.date.issued2022-11-
dc.identifier.citationElectric Power Systems Research, 2022, vol. 212, articl. no. 108481en_US
dc.identifier.issn18732046-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/29066-
dc.description.abstractThis study proposes a methodology for online voltage stability monitoring using a feature subspace based ensemble approach. The overall idea is to use the input from varied feature selectors for the ensemble and aggregate their outputs. This approach is superior to conventional feature selection methods because it can handle stability issues that are usually poor in existing feature selection methods and improve performance. The selected features are used as an input to three different regression algorithms to enable online voltage stability monitoring. A Bayesian optimization technique is used to tune machine learning (ML) models’ hyper-parameters and determine the optimal number of features. The proposed approach is evaluated in experiments using simulated data from the Nordic test system. The simulation results have shown that the proposed method efficiently predicts the status of dynamic voltage stability in the test system.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofElectric Power Systems Researchen_US
dc.rights© Elsevieren_US
dc.subjectOnline voltage stabilityen_US
dc.subjectBayesian optimizationen_US
dc.subjectMachine learningen_US
dc.titleA feature-subspace-based ensemble method for estimating long-term voltage stability marginsen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Leedsen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.epsr.2022.108481en_US
dc.identifier.scopus2-s2.0-85134610192-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85134610192-
dc.relation.volume212en_US
cut.common.academicyear2022-2023en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.journal.journalissn0378-7796-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4429-0225-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

1
checked on Mar 14, 2024

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

183
Last Week
2
Last month
5
checked on Feb 3, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.