Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/27108
Τίτλος: Stochastic Deep Networks with Linear Competing Units for Model-Agnostic Meta-Learning
Συγγραφείς: Kalais, Konstantinos 
Chatzis, Sotirios P. 
Major Field of Science: Engineering and Technology
Field Category: Other Engineering and Technologies
Λέξεις-κλειδιά: Stochastic processes;Machine learning architectures and formulations;Representation learning
Ημερομηνία Έκδοσης: 17-Ιου-2022
Πηγή: Proceedings of the 39th International Conference on Machine Learning, PMLR 162:10586-10597, 2022.
Start page: 10586
End page: 10597
Project: aRTIFICIAL iNTELLIGENCE for the Deaf (aiD) 
Conference: International Conference on Machine Learning 
Περίληψη: This work addresses meta-learning (ML) by considering deep networks with stochastic local winner-takes-all (LWTA) activations. This type of network units results in sparse representations from each model layer, as the units are organized into blocks where only one unit generates a non-zero output. The main operating principle of the introduced units rely on stochastic principles, as the network performs posterior sampling over competing units to select the winner. Therefore, the proposed networks are explicitly designed to extract input data representations of sparse stochastic nature, as opposed to the currently standard deterministic representation paradigm. Our approach produces state-of-the-art predictive accuracy on few-shot image classification and regression experiments, as well as reduced predictive error on an active learning setting; these improvements come with an immensely reduced computational cost. Code is available at: https://github.com/Kkalais/StochLWTA-ML
URI: https://hdl.handle.net/20.500.14279/27108
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Conference Papers
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
Stochastic Deep Networks.pdf2.15 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s)

233
Last Week
1
Last month
1
checked on 3 Ιαν 2025

Download(s)

106
checked on 3 Ιαν 2025

Google ScholarTM

Check


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons