Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/27108
Τίτλος: | Stochastic Deep Networks with Linear Competing Units for Model-Agnostic Meta-Learning | Συγγραφείς: | Kalais, Konstantinos Chatzis, Sotirios P. |
Major Field of Science: | Engineering and Technology | Field Category: | Other Engineering and Technologies | Λέξεις-κλειδιά: | Stochastic processes;Machine learning architectures and formulations;Representation learning | Ημερομηνία Έκδοσης: | 17-Ιου-2022 | Πηγή: | Proceedings of the 39th International Conference on Machine Learning, PMLR 162:10586-10597, 2022. | Start page: | 10586 | End page: | 10597 | Project: | aRTIFICIAL iNTELLIGENCE for the Deaf (aiD) | Conference: | International Conference on Machine Learning | Περίληψη: | This work addresses meta-learning (ML) by considering deep networks with stochastic local winner-takes-all (LWTA) activations. This type of network units results in sparse representations from each model layer, as the units are organized into blocks where only one unit generates a non-zero output. The main operating principle of the introduced units rely on stochastic principles, as the network performs posterior sampling over competing units to select the winner. Therefore, the proposed networks are explicitly designed to extract input data representations of sparse stochastic nature, as opposed to the currently standard deterministic representation paradigm. Our approach produces state-of-the-art predictive accuracy on few-shot image classification and regression experiments, as well as reduced predictive error on an active learning setting; these improvements come with an immensely reduced computational cost. Code is available at: https://github.com/Kkalais/StochLWTA-ML | URI: | https://hdl.handle.net/20.500.14279/27108 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 International | Type: | Conference Papers | Affiliation: | Cyprus University of Technology | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
Stochastic Deep Networks.pdf | 2.15 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
Page view(s)
233
Last Week
1
1
Last month
1
1
checked on 3 Ιαν 2025
Download(s)
106
checked on 3 Ιαν 2025
Google ScholarTM
Check
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons