Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/27108
DC FieldValueLanguage
dc.contributor.authorKalais, Konstantinos-
dc.contributor.authorChatzis, Sotirios P.-
dc.date.accessioned2022-12-21T11:36:33Z-
dc.date.available2022-12-21T11:36:33Z-
dc.date.issued2022-07-17-
dc.identifier.citationProceedings of the 39th International Conference on Machine Learning, PMLR 162:10586-10597, 2022.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/27108-
dc.description.abstractThis work addresses meta-learning (ML) by considering deep networks with stochastic local winner-takes-all (LWTA) activations. This type of network units results in sparse representations from each model layer, as the units are organized into blocks where only one unit generates a non-zero output. The main operating principle of the introduced units rely on stochastic principles, as the network performs posterior sampling over competing units to select the winner. Therefore, the proposed networks are explicitly designed to extract input data representations of sparse stochastic nature, as opposed to the currently standard deterministic representation paradigm. Our approach produces state-of-the-art predictive accuracy on few-shot image classification and regression experiments, as well as reduced predictive error on an active learning setting; these improvements come with an immensely reduced computational cost. Code is available at: https://github.com/Kkalais/StochLWTA-MLen_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relationaRTIFICIAL iNTELLIGENCE for the Deaf (aiD)en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectStochastic processesen_US
dc.subjectMachine learning architectures and formulationsen_US
dc.subjectRepresentation learningen_US
dc.titleStochastic Deep Networks with Linear Competing Units for Model-Agnostic Meta-Learningen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryOther Engineering and Technologiesen_US
dc.journalsOpen Accessen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceInternational Conference on Machine Learningen_US
cut.common.academicyear2022-2023en_US
dc.identifier.spage10586en_US
dc.identifier.epage10597en_US
local.message.claim2024-02-13T15:59:14.544+0200|||rp25739|||submit_approve|||dc_contributor_author|||None*
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0009-0005-3958-0561-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.project.funderEC Joint Research Centre-
crisitem.project.fundingProgramH2020-
crisitem.project.openAireinfo:eu-repo/grantAgreement/EC/H2020/872139-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
Files in This Item:
File Description SizeFormat
Stochastic Deep Networks.pdf2.15 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

Page view(s)

233
Last Week
1
Last month
1
checked on Jan 3, 2025

Download(s)

106
checked on Jan 3, 2025

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons