Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/2664
Τίτλος: | On the use of radon transform for facial expression recognition | Συγγραφείς: | Tsapatsoulis, Nicolas Avrithis, Yannis Kollias, Stefanos D. |
metadata.dc.contributor.other: | Τσαπατσούλης, Νικόλας | Major Field of Science: | Natural Sciences | Field Category: | Computer and Information Sciences | Λέξεις-κλειδιά: | Facial expression recognition;Radon transform;Curve normalization;Neural networks | Ημερομηνία Έκδοσης: | 1999 | Πηγή: | 5th International Conference on Information Systems Analysis and Synthesis, 1999, Orlando, Florida, USA, August | Περίληψη: | A facial expression recognition scheme is presented in this paper, based on features derived from the optical flow between two instances of a face in the same emotional state. A pre-processing step of isolating the human face from the background is first employed by means of face detection and registration. A spatio- temporal description of the expression is then obtained by evaluating the Radon transform of the motion vectors between the face in its neutral condition and at the 'apex' of the expression. A linear curve normalization scheme is proposed, achieving a translation, scaling and resolution invariant representation of the Radon curves. Finally, experimental results are presented, illustrating the performance of the proposed algorithm for expression classification using a correlation criterion and a neural network classifier. | URI: | https://hdl.handle.net/20.500.14279/2664 | Type: | Conference Papers | Affiliation: | National Technical University Of Athens |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
Tsapatsoulis.pdf | 539.62 kB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
Page view(s) 50
496
Last Week
0
0
Last month
3
3
checked on 30 Ιαν 2025
Download(s) 50
73
checked on 30 Ιαν 2025
Google ScholarTM
Check
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα