On the use of Radon Transform for Facial Expression Recognition
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ABSTRACT

A facial expression recognition scheme is presented in
this paper, based on features derived from the optical
flow between two instances of a face in the same
emotional state. A pre-processing step of isolating the
human face from the background is first employed by
means of face detection and registration. A spatio-
temporal description of the expression is then obtained
by evaluating the Radon transform of the motion vectors
between the face in its neutral condition and at the ‘apex’
of the expression. A linear curve normalization scheme
is proposed, achieving a translation, scaling and
resolution invariant representation of the Radon curves.
Finally, experimental results are presented, illustrating
the performance of the proposed algorithm for
expression classification using a correlation criterion and
a neural network classifier.
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1. INTRODUCTION

Two channels have been distinguished in human
interaction [1]. One transmits explicit messages, which
may be about anything or nothing: the other transmits
implicit messages about the speakers themselves.
Understanding the other party's emotions is one of the
key tasks associated with the second, implicit channel.
Building an emotion detection system makes it possible
to assess how well ideas explain people's general
competence at understanding emotion. Methods by
which a computer can recognize visually communicated
facial actions-expressions are of high importance since
they can be used to categorize active and spontaneous
facial expressions, so as to extract information about the
underlying emotional states, wusing visual cues.
Approaches to the recognition of facial expressions can
be divided into two main categories: static and motion
dependent. In static approaches, recognition of a facial
expression is performed using a single image of a face.
Motion dependent approaches extract temporal
information by using at least two instances of a face in
the same emotional state. When two instances are used
(semi-static approaches), they usually represent the face

in its neutral condition and the face at the peak (‘apex’)
of the expression [2]. Fully dynamic approaches use
several frames (generally more than two and less than
15) of video sequences containing a facial expression,
which normally lasts 0.5 to 4 seconds [3].

In this paper we present an expression recognition
scheme based on features derived from the optical flow
between a neutral and a face at the ‘apex’ of the
expression. We avoided using a fully dynamic approach
due to the lack of large databases containing expression
sequences. However, the method can be easily extended
to cover the dynamic approach. The proposed algorithm
utilizes Radon transform of the motion vectors amplitude
to spatio-temporally describe the expressions. Since we
concentrate on computing the basic perturbation within
face area, extremely accurate estimation of the optical
flow is not required [2][3]. Instead a pre-processing stage
for face detection and normalization is necessary, to
enable the computation of facial pixels movement and
not that of the background ones. Optical flow is
estimated only for those facial parts where substantial
movement has occurred. Curves obtained from the
Radon transform in different angles are used for
classification.  Finally a technique for curve
normalization is included in the paper, and leads to
simple classification either using correlation or a neural
classifier.

2. FACE DETECTION AND REGISTRATION

As mentioned in the previous section we aim at
extracting the facial pixels movement to proceed with
expression description. A pre-processing stage where the
face should be detected and registered is required.

Face Detection

Face detection, i.e., isolating the face from the
background, is not a trivial task. However in expression
recognition two constraints can be posed. First, there is
only one face with significant scaling in the expression
frames, thus no multiface searching is required, and
second, the face is the same along the expression.
According to the second constraint, aging and personal
variations like wearing make-up, eyeglasses or beard, are
not likely to occur during the expression. Furthermore,



once the face is detected in the first frame, gained
information about its anatomy, scaling and orientation
can be used in the subsequent frames to minimize the
detection effort.

The algorithm for face detection is described next. Let
M (u,0) be a face template at scale u(h,v), described by

horizontal scaling /4 and vertical scaling v, and angle
(rotation) 6. Let F be a frame containing the face at
arbitrary scale, location and rotation, and 4 a frame area
with the same scaling and rotation as M. We use the
following metric to find the minimum correlation
between 4 and M at scale u and orientation 6:

r(u,0) = min{w} (1

AcF p-a-b

where p=1-c- , is used to account for the face

anatomy, c¢ is a constant (0<¢<0.5) and a=mean(4),
b=mean(M) are used to account for illumination
variations.

The best scale and orientation are obtained by
[U,G)]:argmin{r(u,ﬁ)}and the final detection is

performed using the template M (U,®)and the metric in

(1). The corresponding detected area 4" is then scaled
and rotated according to parameters U, ® so that it is
transformed to standard predefined co-ordinates.

The detection procedure described above is applied only
to the first frame. In the frame of the expression’s ‘apex’
detection is also performed but the best scale U and
rotation ® are known, thus computational complexity is
significantly reduced.

Face Registration

Registration is the transformation of the face to standard
predefined co-ordinates based on detecting the main
facial features (eyes, nose and mouth) [4] and
renormalizing the face by translating, rotating and
expanding / shrinking it around a virtual central (nodal)
point. To account for variations caused by facial
expressions, an image warping transformation based on
radial basis functions has been proposed which
decomposes the transformations into linear and radial
terms [5]. In our approach the face registration step is not
included in the algorithm. Translation, rotation and
scaling variations are removed in the face detection step,
while expanding / shrinking is important only in face
recognition tasks where one should account for different
faces, and not in expression recognition where the face is
the same during the expression.

3. OPTICAL FLOW ESTIMATION

In the following we estimate the optical flow directly
from facial pixel values without involving facial region
tracking or muscle modeling so as to avoid daunting
analysis tasks such as edge detection and facial features
(i.e., eyes, mouth, etc.) localization. The motion field is
computed only in face areas where substantial movement
has occurred [6]:

Let F;, and Fj.; be the neutral and ‘apex’ frames
respectively, in which the face has already been detected
and normalized. Each pixel p,(x,y) at the k-th frame is
described through its surrounding 2nx2n block b, (x,y),
and is associated with the following error:

ek(xay) = |bk(xay)_bk+l(xay)| =

i @)
=2 XlpcGHLy+m)=pp(x+y+m)

I=——nm=—n
Motion vectors are calculated only for the blocks with
significant ¢, (x,y) based on appropriate image-
dependent  thresholding. The  motion  vector
Vi (x,»)=(,,v,) of block b, (x,y) is computed using
block matching in a neighborhood of block b,.,(x,y)
according to the equation:

n n
Vi) =argmin 3 Y |dk(x+l,y+m;vx,vy 3)

(v, )EQ I=—n m=-n

where

dk(xay;vxavy):pk(xay)_pk+l(x_v,‘cay_vy) (4)
and O ={—q,...,q} x{~q,...,q} is the search area. In order
to decrease execution time, logarithmic search is
employed, i.e., only a limited subset of combinations
(V,,v,) € Q are used for searching.

‘Noisy’ motion vectors (i.e., badly estimated pixel-
motion) inevitably arise due to the simplicity of motion
estimation; to account for this, median filtering is
adopted. First, median filtering is applied to motion

vectors phase (directional filtering) and then to their
magnitude.

4. RADON TRANSFORM

Radon transform computed at different angles along with
the estimated facial pixel motion gives a spatio-temporal
representation of the expression. Facial areas, which
move to produce the expression, are efficiently tackled.

The motion vector at position (x,)) can be expressed as

V() =a, (x,1)e’%)  The discrete  Radon



transform of the motion vector magnitude, at angle 6, is
then given by:

RO =S a(x.y)

U=—o0

x={cos@—usin 6, y=(sin O+u cosd (5)

As it can be seen from this equation, using the Radon
transform we estimate the spatial distribution of the
energy of perturbation. An attempt to compute the
direction of the facial parts motion, although useful,
requires an extremely accurate optical flow estimation as
well as facial feature (eyes, mouth) tracking.

R % a(x.y)

Figure 1. [llustration of the Radon transform.

The projections on Radon transform on two different
angles, 0° and 90°, called ‘signatures’, are used to
characterize the expressions. As it is described in the
following section, signatures are normalized to standard
co-ordinates, so that direct classification of signatures
derived from images of different resolution or scaling is
possible.

5. SIGNATURE NORMALIZATION

The normalization process is a transform invariant to
image resolution, translation and scaling and consists of
a set of linear operations on signatures. It is in fact a
special (one-dimensional) case of a more general 2-
dimensional affine-invariant curve transform that has
been used for normalization and classification of curves
representing object contours in image databases [7].
Signature normalization is necessary even when face
registration is applied to the original image sequence,
mainly in order to account for different image
resolutions.

Let R=[r)], ie F ={0,...,L —1} be the 1xL vector of the

Radon transform corresponding to angle 0° or 90°.
Vertical scale normalization is performed first by
calculating the vector S=[s;], i€ F', as

-1/2

L-1
s,:r{%zrfJ , i=0,..,L—1 (6)
k=0

Horizontal normalization follows next, effectively by
removing zero values from the left and right edges of
vector S. This step is necessary in order to retain the
“central” portion of each image, that contains moving
parts of a face. Defining F'={ie F:s, >T} as the set
of indices of “non-zero” eclements of S, and
i, =min{i|ie F'}, i, =max{i|ie F'} as the leftmost
and rightmost elements of F', respectively, the
horizontally normalized vector Z=[z;], i=O0,...,ig-i; is
derived as

i+i; i:()""’iR_iL (7)

Threshold T is selected so that zero values of S are
efficiently distinguished from non-zero ones. A value in
the order of 0.1 is usually satisfactory, and this value is
independent of signature values, since scale
normalization has already been performed.

z;, =5

Finally, the normalized signature is a 1xK vector N=[n,],
i=0,...,K-1 and is derived by resampling vector Z at K
points, using linear interpolation. Thus, all normalized
signatures are vectors of equal length and can be directly
compared and classified. Since the Radon transform is
computed at two different angles, 0° and 90°, a single
vector of length 2K is constructed, containing the
normalized signatures corresponding to these two angles.
This vector is then used for classification using a
correlation coefficient and a neural network approach, as
described in the following section.

The normalization process, as defined above, has several
important properties:

1. It is invariant to translation, scaling and number of
elements (resolution) of signature vectors.

2. It consists of linear operations, so that no information
is actually lost (apart from the zero elements, which
are of no importance for signature classification).

3. The same transform is applied to all signatures,
meaning that no extra knowledge is required for
comparison or matching between two signatures.
Normalized signatures can thus be directly used by
any classification mechanism.

These properties are not found in other scale/translation-
invariant techniques, such as Fourier descriptors and
moments [8].

6. EXPERIMENTAL RESULTS

In the experiments we used 75 images of the Yale
database which correspond to the expressions “normal”,
“happy”, “surprised”, “sad” and “sleepy”. Normal



images were used as the first frame (neutral) of all other
expressions. In Figure 2 four “normal” images are shown
after the face detection procedure. Figure 3 illustrates the
estimated motion and the facial areas with substantial
movement for the expressions “happy”, “surprised”,
“sad” and “sleepy”.

Figure 2. Images of four subjects after face detection and
registration.

Figure 3. Estimated motion and the facial areas with
substantial movement for the expressions “happy”,
“surprised” ”, “sad” and “sleepy”.

Figure 4 depicts the Radon transforms corresponding to
expressions “happy”, “surprised”, “sad” and “sleepy”,
calculated at 0 and 90 degrees. Two different facial
images are used for each expression, depicted with solid
and dotted lines. It is evident that Radon transforms
derived from images of two different persons look

similar to each other if they correspond to the same
expression. Conversely, transforms derived from two
images of the same person with different expressions can
be easily distinguished. Note also that since images of
the same resolution have been used (31x28 image
blocks) and image registration has been performed,
Radon transforms are already aligned with each other,
with the exception of a scale difference of expression
“sur%rised” at 0° and a translation difference of “sleepy”
at 90".
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Figure 4. Radon transforms corresponding to expressions
“happy”, “surprised”, “sad” and “sleepy”, calculated at 0
and 90 degrees. Images of two different persons are used

for each expression, depicted with solid and dotted lines.

The above misalignments are eliminated by using
normalized signatures, illustrated in Figure 5 as vectors
of length K=100. It is clear that all information regarding
the shape of the Radon transform curves is retained, so
that facial expressions can still be distinguished.
Moreover, exact vertical scaling alignment is
accomplished, whereas leading and trailing zeros are
removed, resulting in exact horizontal scaling/translation
alignment.

The importance of signature normalization is more
evident from Figure 6, where images of two different
persons at different resolutions are used. Radon
transforms are represented by vectors of different lengths
with scaling and translation differences in this case,



while normalized signatures can be directly used for
comparisons. It should be noted that the two transform
curves are not “matched” in any way, since
normalization parameters of one curve are not dependent
on any other curve; the same linear operations are
applied to both.
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Figure 5. Normalized signatures corresponding to
expressions “happy”, “surprised”, “sad” and “sleepy”,
again calculated at 0 and 90 degrees. The same images of
two persons are used for each expression, depicted with

solid and dotted lines.

Expression classification based on correlation
coefficients between normalized signatures is first
demonstrated in Table 1. Normalized signatures of
length k=100 are obtained for angles 0° and 90° and
concatenated into vectors of length 200. Correlation
coefficients are then calculated between vectors derived
from images of two different persons (A and B) at four
different expressions “happy”, “surprised”, “sad” and
“sleepy”. It is clear that vectors corresponding to the
same expression of different persons (shown as gray-
shaded areas) produce high correlation coefficient values
and can be distinguished, with the exception of
“surprised B” and “sad A” which are misclassified as the
same expressions.
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Figure 6. Original and normalized signatures
corresponding to expression “sleepy” at 0 degrees. Images
of two persons at different resolutions are used (solid and
dotted lines).

Classification using Neural Networks

Although classification using simple correlation seems
efficient we investigated also classification using a non-
linear classifier. We modified a MLP network with four
output units and one hidden layer to classify the
normalized signatures of the four expressions. 20
signatures were used for the training set, 8 were used for
the validation set and the remaining 32 were used for
testing. After about 400 learning cycles, using a variant
of the backpropagation algorithm, the network with 200
input units, 20 hidden units, and four output units
converged, and was able to recognize all expressions
from the training set and 7 out of 8 form the validation
set. The network was also able to generalize well to the
signatures of the test set (87.5% overall correct
classification). The obtained results are summarized in
the Table 2. Expressions “happy” and “sleepy” were
perfectly classified while in contrast “sadness” obtained
the poorest classification. The results are quite logical
since “sadness” does not present a clear movement of
some specific areas. In contrast the other three
expressions involve movement of specific facial parts
around mouth and eyes which distinguish them. Similar
recognition rates were obtained using an LVQ network
but we did not concentrate on it due to the small dataset
which we were using.



Expression Happy A | Happy B | Surprised A | Surprised B Sad A Sad B Sleepy A Sleepy B
Happy A 1.0000 0.7859 -0.1193 -0.1906 | -0.0225 0.1323 -0.0194 0.0262
Happy B 0.7859 1.0000 -0.1619 -0.1461 0.0791 0.1750 -0.0550 -0.0107
Surprised A -0.1193 -0.1619 1.0000 0.7564 0.6560 0.5561 -0.1663 -0.2771
Surprised B -0.1906 -0.1461 0.7564 1.0000 0.8014 0.5475 -0.2752 -0.3388
Sad A -0.0225 0.0791 0.6560 0.8014 1.0000 0.8411 -0.3254 -0.3196
Sad B 0.1323 0.1750 0.5561 0.5475 0.8411 1.0000 -0.2686 -0.2383
Sleepy A -0.0194 -0.0550 -0.1663 -0.2752 | -0.3254 | -0.2686 1.0000 0.7842
Sleepy B 0.0262 -0.0107 -0.2771 -0.3388 | -0.3196 | -0.2383 0.7842 1.0000

Table 1. Correlation coefficients between normalized signatures derived from images of two persons

(person A and person B) at expressions “happy”,

Expression | Happy Sad Surprised | Sleepy
Happy 8 0 1 0
Sad 0 5 0 0
Surprise 0 2 7 0
Sleepy 0 1 0 8

Success 100% | 62.5% 87.5% 100%

Table 2. Recognition rates obtained form the test set for

the expressions “happy”, “surprised”, “sad” and “sleepy”.

7. CONCLUSIONS - FURTHER WORK

An expression recognition scheme based on features
derived from the optical flow between a neutral and a
face at the ‘apex’ of the expression has been presented,
utilizing Radon transform to estimate the basic
movement within the face area. A technique for
normalization of curves derived from the Radon
transform in different angles is used, leading to simple
classification either using correlation or a neural
classifier.

Although the results are promising, the authors are
currently applying the method on a larger database to
evaluate its efficiency. In addition, an extension of the
method is currently under investigation for expression
recognition using video sequences. The necessity of
estimating the ‘apex’ of the expression is thus eliminated
and more temporal information is added, which is
critical in many expressions.

8. ACKNOWLEDGMENTS

The present work is funded by the project PHYSTA
(Principled Hybrid Systems: Theory and Applications,
1998-2001) of the Training Mobility and Research
Program of the European Community. The authors are
within the team of project PHYSTA, where speech and
phychological cues are also used for emotion
classification.

9

[1].

[2].

[3].

[4].

[5].

[6].

[7].

[8].

surprised”, “sad” and “sleepy”.

9. REFERENCES

R. Cowie and E. Douglas-Cowie, “Speakers and
hearers are people: reflections on speech
deterioration as a consequence of acquired
deafness,” In K-E. Spens and G. Plant (Eds)
Profound deafness and speech communication,
Whurr Publications, London, 510-527, 1995.

K. Mase, “Recognition of facial expression from
optical flow,” IEICE Transactions, vol. E74, 3474-
3483, 1991.

Y. Yacoob and L. S. Davis, “Recognizing human
facial expressions from long image sequences using
optical flow,” [EEE Transactions on Pattern
Analysis and Machine Intelligence 18(6), 636-642,
1996.

N. Intrator, D. Reisfeld and Y. Yeshrun, “Face
Recognition using a Hybrid
Supervised/Unsupervised Neural Network,”
Pattern Recognition Letters 17, 67-76, 1996.

N. Arad and D. Reisfeld, “Image Warping using
few Anchor Points and Radial Functions,”
Computer Graphics Forum, vol. 14 (1), 35-46,
1994.

N. Tsapatsoulis, M. Leonidou and S. Kollias,
“Facial Expression Recognition Using HMM with
Observation Dependent Transition Matrix,” Proc.
of MMSP 98, Portofino, CA, December 1998.

Y. Xirouhakis, Y. Avrithis and S. Kollias, “Image
Retrieval and Classification Using Affine Invariant
B-Spline Representation and Neural Networks,”
Proc. IEE Colloquium in Neural Nets and
Multimedia, London, Oct. 1998.

Z. Huang and F. S. Cohen, “Affine Invariant B-
Spline Moments for Curve Matching,” IEEE Trans.
Image Processing, vol. 5 (10), Oct. 1996.



