Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/26035
Title: Utilising a systematic review-based approach to create a database of individual participant data for meta- and network meta-analyses: the RELEASE database of aphasia after stroke
Authors: Williams, Louise R. 
Ali, Myzoon 
VandenBerg, Kathryn 
Williams, Linda J. 
Abo, Masahiro 
Becker, Frank 
Bowen, Audrey 
Brandenburg, Caitlin 
Breitenstein, Caterina 
Bruehl, Stefanie 
Copland, David A. 
Cranfill, Tamara B. 
Di Pietro-Bachmann, Marie 
Enderby, Pamela 
Fillingham, Joanne 
Galli, Federica Lucia 
Gandolfi, Marialuisa 
Glize, Bertrand 
Godecke, Erin 
Hawkins, Neil 
Hilari, Katerina 
Hinckley, Jacqueline 
Horton, Simon 
Howard, David 
Jaecks, Petra 
Jefferies, Elizabeth 
Jesus, Luis M. T. 
Kambanaros, Maria 
Kang, Eun Kyoung 
Khedr, Eman M. 
Kong, Anthony Pak-Hin 
Kukkonen, Tarja 
Laganaro, Marina 
Lambon Ralph, Matthew A. 
Laska, Ann Charlotte 
Leemann, Beatrice 
Leff, Alexander P. 
Ribeiro Lima, Roxele 
Lorenz, Antje 
MacWhinney, Brian 
Marshall, Rebecca Shisler 
Mattioli, Flavia 
Mavis, İlknur 
Meinzer, Marcus 
Nilipour, Reza 
Noe, Enrique 
Paik, Nam Jong 
Palmer, Rebecca 
Papathanasiou, Ilias 
Patricio, Brigida F. 
Martins, Isabel Pavao 
Price, Cathy 
Jakovac, Tatjana Prizl 
Rochon, Elizabeth 
Rose, Miranda L. 
Rosso, Charlotte 
Rubi-Fessen, Ilona 
Ruiter, Marina B. 
Snell, Claerwen 
Stahl, Benjamin 
Szaflarski, Jerzy P. 
Thomas, Shirley A. 
Van de Sandt-Koenderman, Mieke 
Van der Meulen, Ineke 
Visch-Brink, Evy 
Worrall, Linda 
Wright, Heather Harris 
Brady, Marian C. 
Major Field of Science: Medical and Health Sciences
Field Category: Health Sciences
Keywords: Aphasia;Individual participant data;Rehabilitation reporting standards;Speech and language therapy;Stroke
Issue Date: 2021
Source: Aphasiology, 2021
Journal: Aphasiology 
Abstract: Background: Collation of aphasia research data across settings, countries and study designs using big data principles will support analyses across different language modalities, levels of impairment, and therapy interventions in this heterogeneous population. Big data approaches in aphasia research may support vital analyses, which are unachievable within individual trial datasets. However, we lack insight into the requirements for a systematically created database, the feasibility and challenges and potential utility of the type of data collated. Aim: To report the development, preparation and establishment of an internationally agreed aphasia after stroke research database of individual participant data (IPD) to facilitate planned aphasia research analyses. Methods: Data were collated by systematically identifying existing, eligible studies in any language (≥10 IPD, data on time since stroke, and language performance) and included sourcing from relevant aphasia research networks. We invited electronic contributions and also extracted IPD from the public domain. Data were assessed for completeness, validity of value-ranges within variables, and described according to pre-defined categories of demographic data, therapy descriptions, and language domain measurements. We cleaned, clarified, imputed and standardised relevant data in collaboration with the original study investigators. We presented participant, language, stroke, and therapy data characteristics of the final database using summary statistics. Results: From 5256 screened records, 698 datasets were potentially eligible for inclusion; 174 datasets (5928 IPD) from 28 countries were included, 47/174 RCT datasets (1778 IPD) and 91/174 (2834 IPD) included a speech and language therapy (SLT) intervention. Participants’ median age was 63 years (interquartile range [53, 72]), 3407 (61.4%) were male and median recruitment time was 321 days (IQR 30, 1156) after stroke. IPD were available for aphasia severity or ability overall (n = 2699; 80 datasets), naming (n = 2886; 75 datasets), auditory comprehension (n = 2750; 71 datasets), functional communication (n = 1591; 29 datasets), reading (n = 770; 12 datasets) and writing (n = 724; 13 datasets). Information on SLT interventions were described by theoretical approach, therapy target, mode of delivery, setting and provider. Therapy regimen was described according to intensity (1882 IPD; 60 datasets), frequency (2057 IPD; 66 datasets), duration (1960 IPD; 64 datasets) and dosage (1978 IPD; 62 datasets). Discussion: Our international IPD archive demonstrates the application of big data principles in the context of aphasia research; our rigorous methodology for data acquisition and cleaning can serve as a template for the establishment of similar databases in other research areas.
URI: https://hdl.handle.net/20.500.14279/26035
ISSN: 14645041
DOI: 10.1080/02687038.2021.1897081
Rights: © The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution License.
Type: Article
Affiliation : Glasgow Caledonian University 
The University of Edinburgh 
The Jikei University School of Medicine 
University of Oslo 
Manchester Academic Health Science Centre 
The University of Manchester 
University of Queensland 
University of Munster 
St Mauritius Rehabilitation Centre 
RWTH Aachen University 
Eastern Kentucky University 
University of Geneva 
University of Sheffield 
NHS Improvement 
Marche Polytechnic University 
University of Verona 
University of Bordeaux 
Centre Hospitalier Universitaire de Bordeaux 
Edith Cowan University 
Sir Charles Gairdner Hospital 
University of Glasgow 
University of London 
Nova Southeastern University 
University of East Anglia 
Newcastle University 
University of Bielefeld 
University of York 
University of Aveiro 
Cyprus University of Technology 
Kangwon National University Hospital 
Assiut University Hospital 
University of Central Florida 
Tampere University Hospital 
University of Cambridge 
Karolinska Institutet 
Hôpitaux Universitaires de Genève 
UCL 
Educational Association Bom Jesus 
Humboldt-Universitat zu Berlin 
Carnegie Mellon University 
University of Georgia 
ASST Spedali Civili of Brescia 
Anadolu University 
University Medicine Greifswald 
University of Social Welfare and Rehabilitation Sciences 
NEURORHB-Hospitales Vithas 
Seoul National University College of Medicine 
University of Patras 
Polytechnic Institute of Porto 
University of Lisbon 
Wellcome Centre for Human Neuroimaging 
University of Zagreb 
University of Toronto 
Toronto Rehabilitation Institute 
La Trobe University 
Sorbonne Universités 
Hôpital de la Pitié Salpêtrière 
RehaNova Rehabilitation Hospital 
University of Cologne 
Radboud University Nijmegen 
Warrington and Halton Teaching Hospitals NHS Foundation Trust 
Charité-Universitätsmedizin Berlin 
University of Alabama at Birmingham 
University of Nottingham 
Rijndam Rehabilitation 
Erasmus University Medical Center 
Publication Type: Peer Reviewed
Appears in Collections:Άρθρα/Articles

CORE Recommender
Show full item record

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons