Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/2546
Τίτλος: Knowledge-based image segmentation
Συγγραφείς: Kasparis, Takis 
Marinovic, Nenad M. 
Eichmann, George 
metadata.dc.contributor.other: Κασπαρής, Τάκης
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: Image processing;Pattern recognition;Computer vision
Ημερομηνία Έκδοσης: 27-Μαρ-1987
Πηγή: Intelligent Robots and Computer Vision: Fifth in a Series, 1987, Cambridge, England
Conference: SPIE Conference Proceedings 
Περίληψη: Image segmentation is a highly scene dependent and problem dependent decision making or pattern recognition process. Knowledge about the class of images to be processed and the tasks to be performed plays an important role. Two approaches that explicitly incorporate such knowledge are advanced for the class of images containing polygonal shapes. They can be generalized to other shapes by change of preprocessing steps. Inference is both data driven and goal driven. It is guided by meta rules that are fired by the outputs of preprocessing. Effective suppression of noise is achieved. The methods illustrate the potential of AI techniques and tools for low-level image understanding tasks.
URI: https://hdl.handle.net/20.500.14279/2546
ISSN: 0277-786X
DOI: 10.1117/12.937741
Rights: © 1987 SPIE
Type: Conference Papers
Affiliation: City University of New York 
Affiliation: City University of New York 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s) 20

505
Last Week
0
Last month
2
checked on 22 Δεκ 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα