Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/2546
DC FieldValueLanguage
dc.contributor.authorKasparis, Takis-
dc.contributor.authorMarinovic, Nenad M.-
dc.contributor.authorEichmann, George-
dc.contributor.otherΚασπαρής, Τάκης-
dc.date.accessioned2013-02-19T15:17:54Zen
dc.date.accessioned2013-05-17T05:30:09Z-
dc.date.accessioned2015-12-02T11:35:25Z-
dc.date.available2013-02-19T15:17:54Zen
dc.date.available2013-05-17T05:30:09Z-
dc.date.available2015-12-02T11:35:25Z-
dc.date.issued1987-03-27-
dc.identifier.citationIntelligent Robots and Computer Vision: Fifth in a Series, 1987, Cambridge, Englanden_US
dc.identifier.issn0277-786X-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/2546-
dc.description.abstractImage segmentation is a highly scene dependent and problem dependent decision making or pattern recognition process. Knowledge about the class of images to be processed and the tasks to be performed plays an important role. Two approaches that explicitly incorporate such knowledge are advanced for the class of images containing polygonal shapes. They can be generalized to other shapes by change of preprocessing steps. Inference is both data driven and goal driven. It is guided by meta rules that are fired by the outputs of preprocessing. Effective suppression of noise is achieved. The methods illustrate the potential of AI techniques and tools for low-level image understanding tasks.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rights© 1987 SPIEen_US
dc.subjectImage processingen_US
dc.subjectPattern recognitionen_US
dc.subjectComputer visionen_US
dc.titleKnowledge-based image segmentationen_US
dc.typeConference Papersen_US
dc.affiliationCity University of New Yorken
dc.collaborationCity University of New Yorken_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.countryUnited Statesen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceSPIE Conference Proceedingsen_US
dc.identifier.doi10.1117/12.937741en_US
dc.dept.handle123456789/54en
cut.common.academicyear2019-2020en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-3486-538x-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

Page view(s) 20

505
Last Week
0
Last month
2
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.