Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/2473
Τίτλος: | ICS solar water heater study using artificial neural networks | Συγγραφείς: | Kalogirou, Soteris A. Souliotis, Manolis Tripanagnostopoulos, Yiannis |
Major Field of Science: | Engineering and Technology | Field Category: | Environmental Engineering | Λέξεις-κλειδιά: | ICS solar water heaters;Artificial Neural Networks (ANN);TRNSYS | Ημερομηνία Έκδοσης: | Ιου-2006 | Πηγή: | Eurosun, 2006, 27-30 June, Glasgow, UK | Conference: | Eurosun | Περίληψη: | In this paper we present a study in which a suitable Artificial Neural Network (ANN) and TRNSYS are combined in order to predict the performance of an Integrated Collector Storage (ICS) prototype. We use the experimental data that have been collected from outdoor tests of an ICS solar water heater with cylindrical water storage tank inside a CPC reflector trough, to train the ANN. The ANN is then used though the Excel interface (Type 62) in TRNSYS to model the annual performance of the system by running the model with the values of a typical meteorological year for Athens, Greece. In this way the specific capabilities of both approaches are combined, i.e., use of the radiation processing and modelling power of TRNSYS together with the “black box” modelling approach of ANNs. We present the details of the calculation steps of both methods that aim to the accurate prediction of the system performance and we show that this new method can be used effectively for such predictions | URI: | https://hdl.handle.net/20.500.14279/2473 | Rights: | © Eurosun 2006 | Type: | Conference Papers | Affiliation: | Higher Technical Institute Cyprus University of Patras |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
C81-044_ES06-T01-0189.pdf | 527.74 kB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
Page view(s) 50
380
Last Week
0
0
Last month
0
0
checked on 23 Νοε 2024
Download(s) 50
72
checked on 23 Νοε 2024
Google ScholarTM
Check
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα