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Abstract 

In this paper we present a study in which a suitable Artificial Neural Network (ANN) and TRNSYS 
are combined in order to predict the performance of an Integrated Collector Storage (ICS) prototype. 
We use the experimental data that have been collected from outdoor tests of an ICS solar water heater 
with cylindrical water storage tank inside a CPC reflector trough, to train the ANN. The ANN is then 
used though the Excel interface (Type 62) in TRNSYS to model the annual performance of the system 
by running the model with the values of a typical meteorological year for Athens, Greece. In this way 
the specific capabilities of both approaches are combined, i.e., use of the radiation processing and 
modelling power of TRNSYS together with the “black box” modelling approach of ANNs. We present 
the details of the calculation steps of both methods that aim to the accurate prediction of the system 
performance and we show that this new method can be used effectively for such predictions. 
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1. INTRODUCTION 
Integrated Collector Storage (ICS) systems are solar water heaters that cover domestic needs for hot 
water in the range of 100–200 l per day and are considered as alternative solar devices to the well 
known thermosiphonic systems with flat plate or evacuated tube collectors. The storage tank of an ICS 
system has a dual function, i.e., to collect solar radiation and preserve the heat of the stored water. An 
effective thermal protection of the ICS storage tanks is difficult enough, as a significant part of their 
surface is exposed for the absorption of solar radiation. Double glazing, selective absorbing surface 
coatings and transparent insulating materials have been used for the thermal protection of the storage 
tank. Opaque thermal insulation however can only be placed on the non-illuminated parts of the tank 
surface and vacuum thermal protection is considered effective, mainly for ICS systems that consist of 
cylindrical tanks with small diameters. Cylindrical storage tanks are employed in most commercial 
ICS systems, as they resist the pressure of the water mains. The use of reflectors is considered 
necessary for ICS systems with cylindrical storage tank and depending on their orientation, reflector 
troughs of compound parabolic concentrator (CPC) or involute are used for the effective illumination 
of the storage tanks surfaces. 

Extensive study on ICS solar systems has been performed at the University of Patras in Greece, where 
models of different designs have been tested and analysed [1–7]. On the other hand, at the Higher 
Technical Institute in Cyprus several solar energy systems (including ICS systems) have been studied 
using TRNSYS methodology and artificial neural networks (ANNs) [8–15]. Artificial neural networks 
differ from the traditional modelling approaches in that they are trained to learn solutions rather than 
being programmed to model a specific problem in the normal way. Neural networks are widely 
accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They 
can learn from examples, are fault tolerant in the sense that they are able to handle noisy and 
incomplete data, are able to deal with non-linear problems, and once trained can perform predictions at 
very high speed. ANNs have been used in many engineering applications such as in control systems, 
in classification and in modelling complex process transformations. 

The objective of this paper is to present a model which combines the capabilities of both methods. 
This is necessary because there is no readymade model of the particular ICS unit in TRNSYS and the 
suggested methodology is an alternative to the creation of a new TRNSYS component. This method 
can also be used in cases where systems or parts of them cannot be described analytically. 
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2. DESCRIPTION OF THE ICS UNIT 
The design of the studied ICS unit is mainly based on the effective use of the non–uniform distribution 
of solar radiation on absorber surface, which is the result of using CPC reflector geometry. This 
principal design along with the partially thermal insulation (non-illuminated part) of the storage tank 
aim at achieving effective water heating combined with sufficient temperature stratification during 
daily operation and improving water temperature preservation during night. In the specific ICS model 
the solar radiation acceptance angle a has been chosen to be 90° to allow a significant part of diffused 
solar radiation to be collected. By this choice the total volume of the device can be significantly 
decreased. Finally, the suggested ICS system have lower cost and height compared to that of the usual 
flat plate collector system that has the same ratio of storage water volume per aperture area and hence, 
ICS system can be better harmonized to the surrounding architecture. 

 
Fig. 1 Cross section of the ICS unit 

In Fig. 1 we present the cross section of the experimental model ICS, which consists of truncated 
symmetric CPC reflectors with parabolic parts (AB), (DA′) and involute parts (BC), (C′D). The 
intersection point between the corresponding parabolas’ axis BB′ and DD′ lies on the aperture surface 
(glazing) and determines the truncation level for the constructed experimental model. We consider RT 
the radius of the cylindrical storage tank, ω and ω´ the angles that are used to form the two involute 
reflector parts (BC) and (C′D) correspondingly, with ψ, ψ´ the angles of the two parabolic reflector 
parts (AB) and (DA′) respectively. The maximum angles ω and ω´ are taken ωm = ω´m = 90°, the 
maximum angles ψ and ψ´ (rim angles) are ψ = ψ´ = 63.91° and the focal lengths are f1 = [BE] = πRT /2 
and f2 = [DE´] = π RT / 2, respectively. The analytical mathematical equations of the reflector geometry 
and also the used materials of the construction of the ICS unit can be found in [6]. 

By experimentally testing the unit for more than a year a number of patterns were collected, every 30 
minutes. These are separated into two files a training file comprising 5232 data sets and a validation 
files comprising 960 data sets. These files will be used for the training and validation of the artificial 
neural network. Both data sets comprise data during the day (heating) and during the night (cooling). It 
should be noted that all testing of the ICS unit was performed without draw off. 

3. ARTIFICIAL NEURAL NETWORKS 
Artificial neural networks (ANNs) mimic somewhat the learning process of a human brain. Instead of 
complex rules and mathematical routines, ANNs are able to learn the key information patterns within a 
multidimensional information domain. In addition, the inherently noisy data does not seem to present a 
problem. According to Haykin [16], a neural network is a massively parallel distributed processor that 
has a natural propensity for storing experiential knowledge and making it available for use. It 
resembles the human brain in two respects: (a) the knowledge is acquired by the network through a 
learning process, and (b) inter-neuron connection strengths, known as synaptic weights, are used to 
store the knowledge. 



ANN models represent a new method in energy prediction. ANNs operate like a “black box” model, 
requiring no detailed information about the system. Instead, they learn the relationship between the 
input parameters and the controlled and uncontrolled variables, by studying previously recorded data, 
similar to the way a non-linear regression might perform. Another advantage of using ANNs is their 
ability to handle large and complex systems with many interrelated parameters. They seem to simply 
ignore excess input data that are of minimal significance and concentrate instead on the more 
important inputs. 

A training set is a group of matched input and output patterns used for training the network, usually by 
suitable adaptation of the synaptic weights. The outputs are the dependent variables that the network 
produces for the corresponding input. It is important that all the information needed by the network in 
order to learn, is supplied to it as a dataset. When each pattern is read, the network uses the input data 
to produce an output, which is then compared to the training pattern, i.e., the correct or desired output. 
If there is a difference, the connection weights are usually altered in such a direction that reduces the 
error. After the network has run through all the input patterns, and if the error is still greater than the 
maximum desired tolerance, the ANN runs again through all the input patterns repeatedly, until all the 
errors are within the required tolerance. When the training reaches a satisfactory level, the network 
holds the weights constant. The trained network can then be used to make decisions, identify patterns 
or define associations in new input data sets not used to train it. 

3.1 Group Method Data Handling (GMDH) Neural Network (NN) 
There are various methods that can be used to model the data. These could be based on simple 
regression analysis, multiple regression analysis, neural networks and many others. In this work, the 
neural network method is selected because of its accuracy. One type of neural networks, which is very 
suitable for the present application, is the group method of data handling (GMDH) neural network, 
which was used to model the data. GMDH works by building successive layers with links that are 
simple polynomial terms. These polynomial terms are created by using linear and non-linear 
regression. The initial layer is simply the input layer. The first layer created is made by computing 
regressions of the input variables and then choosing the best ones. The second layer is created by 
computing regressions of the values in the first layer along with the input variables. Again, only the 
best are chosen by the algorithm called survivors. This process continues until the network stops 
getting better (according to a prespecified selection criterion). 

The resulting network can be represented as a complex polynomial description of the model. The 
complexity of the resulting polynomial depends on the variability of the training data. In some respects 
GMDH, it is very much like using regression analysis, but it is far more powerful than the latter. 
GMDH can build very complex models while avoiding overfitting problems. A by-product of GMDH 
is that it recognizes the best variables as it trains. 

The GMDH network is implemented with polynomial terms in the links and a genetic component to 
decide how many layers are built. The result of training at the output layer can be represented as a 
polynomial function of the inputs. The layer building GMDH procedure continues as long as the 
evaluation criteria continue to diminish. GMDH algorithm then checks if this is so and continues or 
stops training. There may also be other conditions, which determine when training is stopped. The 
input data used in the network are the month (1-12), incidence angle, ambient temperature, total 
radiation on the collector aperture and wind velocity. The predicted parameter is the useful energy 
stored in the storage tank. From this energy the mean storage tank temperature can be determined 
during simulations. Additionally the incidence angle, used as input, inherently includes the day 
number and the time of the day, as it depends on these two parameters together with the particular 
inclination of the collector which is fixed. 

The experimental data that have been collected from outdoor tests of an ICS solar water heater as 
described above have been used to train the GMDH ANN. The training dataset was learned by the 
ANN with good accuracy (R2-value equal to 0.9392; the closer this value is to unity the better the 
training accuracy). Subsequently the validation data set was used, which is completely unknown to the 
network. This is used to test the ability of the network to produce accurate results. The R2 value 
obtained in this case is 0.9383 and representative patterns are shown in Fig. 2 (left diagram). 



  

Fig. 2 Comparison between the actual and ANN predicted useful energy and water tank temperature. 

A sample of actual and ANN predicted storage tank temperature for the 224th day of the year (August 
12) is shown in Fig. 2 (right diagram). As can be seen the actual and ANN data are very close and the 
two lines are almost indistinguishable. It should be noted that the initial temperature at the beginning 
of the day is set equal to the actual storage tank temperature so as the two series have the same starting 
point. The final equation obtained from GMDH is quite complex:  
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All the data required by the GMDH need to be scaled from –1 to 1. Therefore, parameters X1 to X5 as 
well as useful energy, obtained from Y (Eq. 1) needs to be scaled in the same interval. This is done 
with: 

1
)(2

minmax

mini
i !

!

!
=

xx

xx
y                                                                                                                                (2) 

In Eq. (1) the parameter X1 stands for the month, X2 for ambient temperature, X3 for the total radiation 
on the collector aperture, X4 for wind velocity and X5 for the incidence angle. The latter (incidence 
angle) can easily be estimated from the solar radiation processor of TRNSYS. 

4. SIMULATIONS 
The ANN is then used though the Excel interface (Type 62) in TRNSYS [17] to model the annual 
performance of the system by running the model with the values of a typical meteorological year 
(TMY) of Athens, Greece. In this way the specific capabilities of both approaches are combined, i.e., 
use of the radiation process and modelling power of TRNSYS together with the “black box” 
modelling approach of ANNs. The time step used in TRNSYS was 30 minutes so as to be similar to 
the data used in the training of the ANN. 

The results of the simulations for April 14 and August 12 and 13 are shown in Figs. 3 and 4 
respectively. Both these figures are for no draw-off. Of course here the accuracy depends on how close 
the actual weather data during testing are to the weather data included in the TMY file. However, the 
small deviation recorded in mean storage tank temperature in the above figures is considered 
acceptable. As can be seen in both cases the maximum mean storage tank temperature reaches 50°C in 
April and 60°C in August whereas the lowest temperature which is the effect of tank cool down due to 
night time losses is 32°C in April and 40°C in August. 



 

Fig. 3 Actual and ANN predicted storage tank temperature for April 14 

 

Fig. 4 Actual and ANN predicted storage tank temperature for August 12 and 13 

Another test performed is to use certain patterns of draw off without the possibility of validation. Two 
such patterns were tested; a draw off pattern of 20 lt/hr from 19:00 till 22:00 (60 litters in total) and a 
pattern with 15 lt/hr draw off at 13:00, 15:00, 17:00 and 19:00. The results for August 12 are shown in 
Fig. 5. As can be seen the second pattern has more severe effect on the storage temperature because 
the temperature of the stored water has lower values at the time that the draw off pattern starts, 
although the solar radiation intensity has the maximum value at 12:30. In this point we should note 
that generally the time which the mean water tank temperature is maximized depends on a significant 
parameter used in the design of ICS systems. This parameter is the ratio of the stored water volume 
per aperture area, VT / Aα (lt/m²), which describes the sufficiency of the solar device for heating 
specific water volume and affect the time delay of the maximization of the mean water temperature to 
the corresponding maximization of the solar radiation intensity. In the specific device VT / Aα equals 
to 100.28 lt/m². 



 

Fig. 5 Effect of draw off pattern on mean storage tank temperature 

5. CONCLUSIONS 
In this paper we present the details of the simulation of an integrated collector storage system with 
ANNs and TRNSYS. This is the only way to simulate such a system as no ready made routine is 
available in TRNSYS to model this type of systems. It is proved by the results that this new method 
can be used effectively for such predictions. The suggested methodology of combining ANNs and 
TRNSYS can be used to model other systems which are difficult to model analytically or their model 
is not available. We are planning to extent this method into the full year simulation of the system in 
order to be able to estimate the long-term performance prediction of such systems. 
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