Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/2422
Τίτλος: On-line state and parameter estimation of an under-actuated underwater vehicle using a modified dual unscented kalman filter
Συγγραφείς: Karras, George C. 
Kyriakopoulos, Kostas J. 
Loizou, Savvas 
metadata.dc.contributor.other: Λοΐζου, Σάββας
Λέξεις-κλειδιά: Algorithms;Computer vision;Linear control systems;Submersibles
Ημερομηνία Έκδοσης: 2010
Πηγή: 23rd IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, 2010, Taipei, Taiwan
Περίληψη: This paper presents a novel modification of the Dual Unscented Kalman Filter (DUKF) for the on-line concurrent state and parameter estimation. The developed algorithm is successfully applied to an under-actuated underwater vehicle. Like in the case of conventional DUKF the proposed algorithm demonstrates quick convergence of the parameter vector. In addition, experimental results indicate an increased performance when the proposed methodology is utilized. The applicability and performance of the proposed algorithm is experimentally verified by combining the proposed DUKF with a non-linear controller on a modified Videoray ROV in a test tank. The on-line estimation of the vehicle states and dynamic parameters is achieved by fusing data from a Laser Vision System (LVS) and an Inertial Measurement Unit (IMU).
URI: https://hdl.handle.net/20.500.14279/2422
ISSN: 21530858
DOI: 10.1109/IROS.2010.5648831
Rights: ©2010 IEEE
Type: Conference Papers
Affiliation: Frederick University 
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

8
checked on 9 Νοε 2023

Page view(s) 20

488
Last Week
1
Last month
0
checked on 26 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα