Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/23921
Τίτλος: Nowcasting significant wave height by hierarchical machine learning classification
Συγγραφείς: Demetriou, Demetris 
Michailides, Constantine 
Papanastasiou, George 
Onoufriou, Toula 
Major Field of Science: Engineering and Technology
Field Category: Civil Engineering
Λέξεις-κλειδιά: Hierarchical machine learning;Classification algorithms;Significant wave height prediction;Classification based modeling;Hierarchical decomposition;Ocean engineering
Ημερομηνία Έκδοσης: 15-Δεκ-2021
Πηγή: Ocean Engineering, 2021, vol. 242, articl. no. 110130
Volume: 242
Περιοδικό: Ocean Engineering 
Περίληψη: This paper proposes an alternative method for nowcasting significant wave height (Hs) through the development of hierarchical machine learning classification models. In testing the hypothesis that hierarchical classification can improve Hs prediction, flat and hierarchical classifiers were developed and tested on field-data recorded on a coastal jetty located in the southern coasts of Cyprus. A comprehensive investigation of the performance of flat over hierarchical classification models yields that the proposed method provides greater flexibility throughout the model development stages. This flexibility is attributed to the manipulation of data before training, optimization of classifier's hyperparameters during training, and the curtailment of features post-training at each level of the hierarchy. It is demonstrated that, the hierarchical approach resulted in better classification performance across a plethora of performance metrics established for a comprehensive comparison. It is also shown that the increased performance of the proposed approach comes at the expense of complexity arising from performing computationally expensive operations and the requirement for development of multiple local classifiers. Still, the increased classification performance of the hierarchical approach highlights the potential of this original method and the requirement for a rigid framework to be constructed for the development of hierarchical models for Hs prediction.
URI: https://hdl.handle.net/20.500.14279/23921
ISSN: 00298018
DOI: 10.1016/j.oceaneng.2021.110130
Rights: © Elsevier
Type: Article
Affiliation: Cyprus University of Technology 
VTT Vasiliko Ltd 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

1
checked on 14 Μαρ 2024

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s) 50

327
Last Week
0
Last month
5
checked on 22 Δεκ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons