Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/23696
Title: Application of Classification and Word Embedding Techniques to Evaluate Tourists’ Hotel-revisit Intention
Authors: Christodoulou, Evripides 
Gregoriades, Andreas 
Pampaka, Maria 
Herodotou, Herodotos 
Major Field of Science: Social Sciences
Field Category: Economics and Business
Keywords: XGBoost;Topic Analysis;Word2Vec;Revisit Intention;Data Mining;Tourists’ Reviews
Issue Date: Apr-2021
Source: 23th International Conference on Enterprise Information Systems, 2021, 26-28 April
Conference: International Conference on Enterprise Information Systems 
Abstract: Revisit intention is a key indicator for future business performance in the hospitality industry. This work focuses on the identification of patterns from user-generated data explaining the reasons why tourist may revisit a hotel they stayed at during their holidays and aims to identify differences among two classes of hotels (4-5 star and 2-3 star). The method utilises data from TripAdvisor retrieved using a scrapper application. Topic modelling is initially performed to identify the main themes discussed in each tourist review. Subsequently, reviews are labelled depending on whether they mention the intention of their author to revisit the hotel in the future using an ontology of revisit-intention generated using Word2Vec word embedding. The identified topics from the labelled reviews are utilised to train an Extreme Gradient Boosting model (XGBoost) to predict revisit intention, which is then used to identify topic-patterns in reviews that relate to revisit intention. The learned model achieved satisfactory performance and was used to identify the most influential topics related to revisit intention using an explainable machine learning technique to illustrate visually the rules embedded in the learned XGBoost model. The method is applied on reviews from tourists that visited Cyprus between 2009-2019. Results highlight that staff professionalism (e.g., politeness, smile) is critical for both classes of hotels; however, its effect is smaller on 2-3 start hotels where cleanliness has greater influence on revisiting.
URI: https://hdl.handle.net/20.500.14279/23696
Rights: © SCITEPRESS
Type: Conference Papers
Affiliation : Cyprus University of Technology 
The University of Manchester 
Publication Type: Peer Reviewed
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Show full item record

Page view(s)

295
Last Week
2
Last month
7
checked on Dec 21, 2024

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons