Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/23629
Τίτλος: Multiscale amplitude-modulation frequency-modulation (AM-FM) texture analysis of multiple sclerosis in brain MRI images
Συγγραφείς: Loizou, Christos P. 
Murray, Víctor 
Pattichis, Marios S. 
Seimenis, Ioannis 
Pantziaris, Marios 
Pattichis, Constantinos S. 
Major Field of Science: Engineering and Technology
Field Category: Medical Engineering
Λέξεις-κλειδιά: Amplitude-modulation frequency-modulation (AM–FM);Magnetic resonance imaging (MRI);Multiple sclerosis (MS);Texture analysis
Ημερομηνία Έκδοσης: Ιαν-2011
Πηγή: IEEE Transactions on Information Technology in Biomedicine, 2011, vol. 15, no. 1, pp. 119 - 129
Volume: 15
Issue: 1
Start page: 119
End page: 129
Περιοδικό: IEEE Transactions on Information Technology in Biomedicine 
Περίληψη: This study introduces the use of multiscale amplitude modulation-frequency modulation (AM-FM) texture analysis of multiple sclerosis (MS) using magnetic resonance (MR) images from brain. Clinically, there is interest in identifying potential associations between lesion texture and disease progression, and in relating texture features with relevant clinical indexes, such as the expanded disability status scale (EDSS). This longitudinal study explores the application of 2-D AM-FM analysis of brain white matter MS lesions to quantify and monitor disease load. To this end, MS lesions and normal-appearing white matter (NAWM) from MS patients, as well as normal white matter (NWM) from healthy volunteers, were segmented on transverse T2-weighted images obtained from serial brain MR imaging (MRI) scans (0 and 6-12 months). The instantaneous amplitude (IA), the magnitude of the instantaneous frequency (IF), and the IF angle were extracted from each segmented region at different scales. The findings suggest that AM-FM characteristics succeed in differentiating 1) between NWM and lesions; 2) between NAWM and lesions; and 3) between NWM and NAWM. A support vector machine (SVM) classifier succeeded in differentiating between patients that, two years after the initial MRI scan, acquired an EDSS ≤ 2 from those with EDSS > 2 (correct classification rate = 86%). The best classification results were obtained from including the combination of the low-scale IA and IF magnitude with the medium-scale IA. The AM-FM features provide complementary information to classical texture analysis features like the gray-scale median, contrast, and coarseness. The findings of this study provide evidence that AM-FM features may have a potential role as surrogate markers of lesion load in MS.
URI: https://hdl.handle.net/20.500.14279/23629
ISSN: 15580032
DOI: 10.1109/TITB.2010.2091279
Rights: © IEEE
Type: Article
Affiliation: Intercollege 
University of New Mexico 
Ayios Therissos Medical Diagnostic Center 
Cyprus Institute of Neurology and Genetics 
University of Cyprus 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 5

82
checked on 2 Φεβ 2024

WEB OF SCIENCETM
Citations

63
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

273
Last Week
5
Last month
9
checked on 3 Ιαν 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons