Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/22649
Τίτλος: Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems
Συγγραφείς: Lucas Filho, Edson Ramiro 
Cunha de Almeida, Eduardo 
Scherzinger, Stefanie 
Herodotou, Herodotos 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: SQL-on-Hadoop;Parameter tuning;Self-tuning
Ημερομηνία Έκδοσης: Ιου-2021
Πηγή: Big Data Research, 2021, vol. 25, articl. no. 100204
Volume: 25
Περιοδικό: Big Data Research 
Περίληψη: SQL-on-Hadoop engines such as Hive provide a declarative interface for processing large-scale data over computing frameworks such as Hadoop. The underlying frameworks contain a large number of configuration parameters that can significantly impact performance, but which are hard to tune. The problem of automatic parameter tuning has become a lively research area and several sophisticated tuning advisors have been proposed for Hadoop. In this paper, we conduct an experimental study to explore the impact of Hadoop parameter tuning on Hive. We reveal that the performance of Hive queries does not necessarily improve when using Hadoop-focused tuning advisors out-of-the-box, at least when following the current approach of applying the same tuning setup uniformly for evaluating the entire query. After extending the Hive query processing engine, we propose an alternative tuning approach and experimentally show how current Hadoop tuning advisors can now provide good and robust performance for Hive queries, as well as improved cluster resource utilization. We share our observations with the community and hope to create an awareness for this problem as well as to initiate new research on automatic parameter tuning for SQL-on-Hadoop systems.
URI: https://hdl.handle.net/20.500.14279/22649
ISSN: 22145796
DOI: 10.1016/j.bdr.2021.100204
Rights: © Elsevier
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Article
Affiliation: University of Passau 
Federal University of Paraná 
Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

6
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

312
Last Week
0
Last month
7
checked on 23 Δεκ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons