Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/22649
Τίτλος: | Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems | Συγγραφείς: | Lucas Filho, Edson Ramiro Cunha de Almeida, Eduardo Scherzinger, Stefanie Herodotou, Herodotos |
Major Field of Science: | Natural Sciences | Field Category: | Computer and Information Sciences | Λέξεις-κλειδιά: | SQL-on-Hadoop;Parameter tuning;Self-tuning | Ημερομηνία Έκδοσης: | Ιου-2021 | Πηγή: | Big Data Research, 2021, vol. 25, articl. no. 100204 | Volume: | 25 | Περιοδικό: | Big Data Research | Περίληψη: | SQL-on-Hadoop engines such as Hive provide a declarative interface for processing large-scale data over computing frameworks such as Hadoop. The underlying frameworks contain a large number of configuration parameters that can significantly impact performance, but which are hard to tune. The problem of automatic parameter tuning has become a lively research area and several sophisticated tuning advisors have been proposed for Hadoop. In this paper, we conduct an experimental study to explore the impact of Hadoop parameter tuning on Hive. We reveal that the performance of Hive queries does not necessarily improve when using Hadoop-focused tuning advisors out-of-the-box, at least when following the current approach of applying the same tuning setup uniformly for evaluating the entire query. After extending the Hive query processing engine, we propose an alternative tuning approach and experimentally show how current Hadoop tuning advisors can now provide good and robust performance for Hive queries, as well as improved cluster resource utilization. We share our observations with the community and hope to create an awareness for this problem as well as to initiate new research on automatic parameter tuning for SQL-on-Hadoop systems. | URI: | https://hdl.handle.net/20.500.14279/22649 | ISSN: | 22145796 | DOI: | 10.1016/j.bdr.2021.100204 | Rights: | © Elsevier Attribution-NonCommercial-NoDerivatives 4.0 International |
Type: | Article | Affiliation: | University of Passau Federal University of Paraná Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
6
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
2
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
312
Last Week
0
0
Last month
7
7
checked on 23 Δεκ 2024
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons