Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/22649
DC FieldValueLanguage
dc.contributor.authorLucas Filho, Edson Ramiro-
dc.contributor.authorCunha de Almeida, Eduardo-
dc.contributor.authorScherzinger, Stefanie-
dc.contributor.authorHerodotou, Herodotos-
dc.date.accessioned2021-06-08T04:26:50Z-
dc.date.available2021-06-08T04:26:50Z-
dc.date.issued2021-07-
dc.identifier.citationBig Data Research, 2021, vol. 25, articl. no. 100204en_US
dc.identifier.issn22145796-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/22649-
dc.description.abstractSQL-on-Hadoop engines such as Hive provide a declarative interface for processing large-scale data over computing frameworks such as Hadoop. The underlying frameworks contain a large number of configuration parameters that can significantly impact performance, but which are hard to tune. The problem of automatic parameter tuning has become a lively research area and several sophisticated tuning advisors have been proposed for Hadoop. In this paper, we conduct an experimental study to explore the impact of Hadoop parameter tuning on Hive. We reveal that the performance of Hive queries does not necessarily improve when using Hadoop-focused tuning advisors out-of-the-box, at least when following the current approach of applying the same tuning setup uniformly for evaluating the entire query. After extending the Hive query processing engine, we propose an alternative tuning approach and experimentally show how current Hadoop tuning advisors can now provide good and robust performance for Hive queries, as well as improved cluster resource utilization. We share our observations with the community and hope to create an awareness for this problem as well as to initiate new research on automatic parameter tuning for SQL-on-Hadoop systems.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofBig Data Researchen_US
dc.rights© Elsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSQL-on-Hadoopen_US
dc.subjectParameter tuningen_US
dc.subjectSelf-tuningen_US
dc.titleInvestigating Automatic Parameter Tuning for SQL-on-Hadoop Systemsen_US
dc.typeArticleen_US
dc.collaborationUniversity of Passauen_US
dc.collaborationFederal University of Paranáen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryGermanyen_US
dc.countryBrazilen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.bdr.2021.100204en_US
dc.relation.volume25en_US
cut.common.academicyear2020-2021en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn2214-5796-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-8717-1691-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

312
Last Week
0
Last month
7
checked on Dec 23, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons