Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/22647
Τίτλος: Numerical and experimental investigation of breaking wave forces on a monopile-type offshore wind turbine
Συγγραφείς: Zeng, Xinmeng 
Shi, Wei 
Michailides, Constantine 
Zhang, Songhao 
Li, Xin 
Major Field of Science: Engineering and Technology
Field Category: Environmental Engineering
Λέξεις-κλειδιά: Hydrodynamic loads;Spilling breaking waves;Secondary load cycle;Wave run-up
Ημερομηνία Έκδοσης: Σεπ-2021
Πηγή: Renewable Energy, 2021, vol. 175, pp. 501-519
Volume: 175
Start page: 501
End page: 519
Περιοδικό: Renewable Energy 
Περίληψη: Global efforts aiming to shift towards de-carbonization give rise to remarkable challenges for power systems and their operators. Modern power systems need to deal with the uncertain and volatile behavior of their components (especially, renewable energy generation); this necessitates the use of increased operating reserves. To ameliorate this expensive requirement, intelligent systems for determining appropriate unit commitment schedules have risen as a promising solution. This is especially the case for weak power systems with low dispatching flexibility and high dependency on imported fossil fuels. In this work, we introduce a radically new paradigm for addressing the optimal unit commitment problem, that is capable of accounting for the largely unaddressed challenge of the uncertain and volatile behavior of modern power systems. Our solution leverages widely adopted developments in the field of uncertainty-aware machine learning models, namely Bayesian optimization. This framework enables the effective discovery of the best possible configuration of a volatile system with uncertain and unknown dynamics, without the need of introducing restrictive prior assumptions. Based on appropriately selected acquisition function and Gaussian process regression, it constitutes a radically different from existing approaches, which heavily rely on heuristic approximations and do not allow to account for volatile behavioral patterns. On the contrary, it guarantees global optimum solutions in non-convex optimization tasks in the least possible number of trials. The demonstrated results show better performance in terms of total production cost and number of function evaluations, inspiring system operators to better schedule their power networks in the forthcoming, de-carbonized grids.
URI: https://hdl.handle.net/20.500.14279/22647
ISSN: 09601481
DOI: 10.1016/j.renene.2021.05.009
Rights: © Elsevier
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Article
Affiliation: Dalian University of Technology 
Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

33
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations

27
Last Week
0
Last month
2
checked on 29 Οκτ 2023

Page view(s)

286
Last Week
0
Last month
3
checked on 22 Δεκ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons