Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/2132
Τίτλος: | Computing 3sls solutions of simultaneous equation models with a possible singular variance-covariance matrix | Συγγραφείς: | Dinenis, Elias Kontoghiorghes, Erricos John |
metadata.dc.contributor.other: | Κοντογιώργης, Έρρικος Γιάννης | Major Field of Science: | Social Sciences | Λέξεις-κλειδιά: | Parallel algorithms;Algorithms;Least squares;Analysis of covariance | Ημερομηνία Έκδοσης: | Αυγ-1997 | Πηγή: | Computational Economics, 1997, vol. 10, no. 3, pp. 231-250 | Volume: | 10 | Issue: | 3 | Start page: | 231 | End page: | 250 | Περιοδικό: | Computational Economics | Περίληψη: | Algorithms for computing the three-stage least squares (3SLS) estimator usually require the disturbance covariance matrix to be non-singular. However, the solution of a reformulated simultaneous equation model (SEM) results into the redundancy of this condition. Having as a basic tool the QR decomposition, the 3SLS estimator, its dispersion matrix and methods for estimating the singular disturbance covariance matrix are derived. Expressions revealing linear combinations between the observations which become redundant have also been presented. Algorithms for computing the 3SLS estimator after the SEM has been modified by deleting or adding new observations or variables are found not to be very efficient, due to the necessity of removing the endogeneity of the new data or by re-estimating the disturbance covariance matrix. Three methods have been described for solving SEMs subject to separable linear equalities constraints. The first method considers the constraints as additional precise observations while the other two methods reparameterized the constraints to solve reduced unconstrained SEMs. Methods for computing the main matrix factorizations illustrate the basic principles to be adopted for solving SEMs on serial or parallel computers. | URI: | https://hdl.handle.net/20.500.14279/2132 | ISSN: | 15729974 | DOI: | 10.1023/A:1008617207791 | Rights: | © Kluwer Academic | Type: | Article | Affiliation: | Institut d'Informatique, Université de Neuchâtel, Switzerland | Affiliation: | Université de Neuchâtel City, University of London |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
17
checked on 9 Νοε 2023
Page view(s)
498
Last Week
8
8
Last month
9
9
checked on 17 Φεβ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα