Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/2132
DC FieldValueLanguage
dc.contributor.authorDinenis, Elias-
dc.contributor.authorKontoghiorghes, Erricos John-
dc.contributor.otherΚοντογιώργης, Έρρικος Γιάννης-
dc.date.accessioned2013-02-01T14:14:57Zen
dc.date.accessioned2013-05-16T08:21:54Z-
dc.date.accessioned2015-12-02T09:26:36Z-
dc.date.available2013-02-01T14:14:57Zen
dc.date.available2013-05-16T08:21:54Z-
dc.date.available2015-12-02T09:26:36Z-
dc.date.issued1997-08-
dc.identifier.citationComputational Economics, 1997, vol. 10, no. 3, pp. 231-250en_US
dc.identifier.issn15729974-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/2132-
dc.description.abstractAlgorithms for computing the three-stage least squares (3SLS) estimator usually require the disturbance covariance matrix to be non-singular. However, the solution of a reformulated simultaneous equation model (SEM) results into the redundancy of this condition. Having as a basic tool the QR decomposition, the 3SLS estimator, its dispersion matrix and methods for estimating the singular disturbance covariance matrix are derived. Expressions revealing linear combinations between the observations which become redundant have also been presented. Algorithms for computing the 3SLS estimator after the SEM has been modified by deleting or adding new observations or variables are found not to be very efficient, due to the necessity of removing the endogeneity of the new data or by re-estimating the disturbance covariance matrix. Three methods have been described for solving SEMs subject to separable linear equalities constraints. The first method considers the constraints as additional precise observations while the other two methods reparameterized the constraints to solve reduced unconstrained SEMs. Methods for computing the main matrix factorizations illustrate the basic principles to be adopted for solving SEMs on serial or parallel computers.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofComputational Economicsen_US
dc.rights© Kluwer Academicen_US
dc.subjectParallel algorithmsen_US
dc.subjectAlgorithmsen_US
dc.subjectLeast squaresen_US
dc.subjectAnalysis of covarianceen_US
dc.titleComputing 3sls solutions of simultaneous equation models with a possible singular variance-covariance matrixen_US
dc.typeArticleen_US
dc.affiliationInstitut d'Informatique, Université de Neuchâtel, Switzerlanden
dc.collaborationUniversité de Neuchâtelen_US
dc.collaborationCity, University of Londonen_US
dc.journalsSubscriptionen_US
dc.countrySwitzerlanden_US
dc.countryUnited Kingdomen_US
dc.subject.fieldSocial Sciencesen_US
dc.identifier.doi10.1023/A:1008617207791en_US
dc.dept.handle123456789/54en
dc.relation.issue3en_US
dc.relation.volume10en_US
cut.common.academicyear2020-2021en_US
dc.identifier.spage231en_US
dc.identifier.epage250en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.fulltextNo Fulltext-
crisitem.journal.journalissn1572-9974-
crisitem.journal.publisherSpringer Nature-
crisitem.author.deptDepartment of Finance, Accounting and Management Science-
crisitem.author.facultyFaculty of Tourism Management, Hospitality and Entrepreneurship-
crisitem.author.orcid0000-0001-9704-9510-
crisitem.author.parentorgFaculty of Management and Economics-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

17
checked on Nov 9, 2023

Page view(s) 20

469
Last Week
0
Last month
1
checked on Nov 8, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.