Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/2036
Τίτλος: Predicting corporate financial distress: a time-series CUSUM methodology
Συγγραφείς: Kahya, Emel 
Theodossiou, Panayiotis 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Finance;Accounting;Statistical methods;Business
Ημερομηνία Έκδοσης: 1999
Πηγή: Review of quantitative finance and accounting, 1999, vol. 13, iss. 4, pp. 323-345
Volume: 13
Issue: 4
Start page: 323
End page: 345
Περιοδικό: Review of Quantitative Finance and Accounting 
Περίληψη: The ability to predict corporate financial distress can be strengthened using models that account for serial correlation in the data, incorporate information from more than one period and include stationary explanatory variables. This paper develops a stationary financial distress model for AMEX and NYSE manufacturing and retailing firms based on the statistical methodology of time-series Cumulative Sums (CUSUM). The model has the ability to distinguish between changes in the financial variables of a firm that are the result of serial correlation and changes that are the result of permanent shifts in the mean structure of the variables due to financial distress. Tests performed show that the model is robust over time and outperforms similar models based on the popular statistical methods of Linear Discriminant Analysis and Logit
URI: https://hdl.handle.net/20.500.14279/2036
ISSN: 15737179
DOI: 10.1023/A:1008326706404
Rights: © Kluwer Academic Publishers
Type: Article
Affiliation: Rutgers University 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

56
checked on 9 Νοε 2023

Page view(s) 5

633
Last Week
1
Last month
4
checked on 11 Δεκ 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα