Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/19718
Τίτλος: A Data-Driven Two-Stage Distributionally Robust Planning Tool for Sustainable Microgrids
Συγγραφείς: Dehghan, Shahab 
Nakiganda, Agnes 
Aristidou, Petros 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: Uncertainty;Microgrids;Tools;Probability distribution;Planning;Power generation;Load modeling
Ημερομηνία Έκδοσης: Αυγ-2020
Πηγή: 2020 IEEE Power & Energy Society General Meeting (PESGM), 2-6 Aug. 2020, Montreal, QC, Canada
Conference: 2020 IEEE Power & Energy Society General Meeting (PESGM) 
Περίληψη: This paper presents a data-driven two-stage distributionally robust planning tool for sustainable microgrids under the uncertainty of load and power generation of renewable energy sources (RES) during the planning horizon. In the proposed two-stage planning tool, the first-stage investment variables are considered as here-and-now decisions and the second-stage operation variables are considered as wait-and-see decisions. In practice, it is hard to obtain the true probability distribution of the uncertain parameters. Therefore, a Wasserstein metric-based ambiguity set is presented in this paper to characterize the uncertainty of load and power generation of RES without any presumption on their true probability distributions. In the proposed data-driven ambiguity set, the empirical distributions of historical load and power generation of RES are considered as the center of the Wasserstein ball. Since the proposed distributionally robust planning tool is intractable and it cannot be solved directly, duality theory is used to come up with a tractable mixed-integer linear (MILP) counterpart. The proposed model is tested on a 33-bus distribution network and its effectiveness is showcased under different conditions.
URI: https://hdl.handle.net/20.500.14279/19718
DOI: 10.1109/PESGM41954.2020.9281869
Rights: © IEEE
Type: Conference Papers
Affiliation: University of Leeds 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
manuscript.pdf208.59 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

3
checked on 6 Νοε 2023

Page view(s)

303
Last Week
0
Last month
4
checked on 22 Νοε 2024

Download(s) 20

218
checked on 22 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα