Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/19539
Τίτλος: | Clustering Data-driven Local Control Schemes in Active Distribution Grids | Συγγραφείς: | Karagiannopoulos, Stavros Valverde, Gustavo Aristidou, Petros Hug, Gabriela |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Active distribution networks;Data-driven control design;Machine learning;Optimal power flow (OPF);Optimal control;Time-series clustering | Ημερομηνία Έκδοσης: | Μαρ-2021 | Πηγή: | IEEE Systems Journal , 2021, vol. 15, no. 1, pp. 1467 - 1476 | Volume: | 15 | Issue: | 1 | Start page: | 1467 | End page: | 1476 | Περιοδικό: | IEEE Systems Journal | Περίληψη: | Controllable Distributed Energy Resources (DERs) in Active Distribution Grids (ADGs) provide operational flexibility to system operators thereby offering the means to address various challenges. Existing local controllers for these resources are communication-free, robust, and cheap, but with sub-optimal performance compared to centralized approaches that heavily rely on monitoring and communication. Data-driven local controls can bridge the gap by providing customized local controllers designed from historical data, off-line optimization, and machine learning methods. These local controllers emulate the optimal behavior, under expected operating conditions, without the use of communication. However, they exhibit high implementation overhead with the need of individual programming of DER controllers, especially when there are many DERs or when new units are installed at a later stage. In this paper, we propose a clustering method to decrease the implementation overhead by reducing the individual DER controls into a smaller set while still achieving high performance. We show the performance of the method on a three-phase, unbalanced, low-voltage, distribution network. | URI: | https://hdl.handle.net/20.500.14279/19539 | ISSN: | 19379234 | DOI: | 10.1109/JSYST.2020.3004277 | Rights: | © IEEE | Type: | Article | Affiliation: | Cyprus University of Technology ETH Zurich University of Costa Rica |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
manuscript.pdf | 802.38 kB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
Page view(s)
347
Last Week
1
1
Last month
1
1
checked on 3 Ιαν 2025
Download(s)
393
checked on 3 Ιαν 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα