Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/19539
Τίτλος: Clustering Data-driven Local Control Schemes in Active Distribution Grids
Συγγραφείς: Karagiannopoulos, Stavros 
Valverde, Gustavo 
Aristidou, Petros 
Hug, Gabriela 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: Active distribution networks;Data-driven control design;Machine learning;Optimal power flow (OPF);Optimal control;Time-series clustering
Ημερομηνία Έκδοσης: Μαρ-2021
Πηγή: IEEE Systems Journal , 2021, vol. 15, no. 1, pp. 1467 - 1476
Volume: 15
Issue: 1
Start page: 1467
End page: 1476
Περιοδικό: IEEE Systems Journal 
Περίληψη: Controllable Distributed Energy Resources (DERs) in Active Distribution Grids (ADGs) provide operational flexibility to system operators thereby offering the means to address various challenges. Existing local controllers for these resources are communication-free, robust, and cheap, but with sub-optimal performance compared to centralized approaches that heavily rely on monitoring and communication. Data-driven local controls can bridge the gap by providing customized local controllers designed from historical data, off-line optimization, and machine learning methods. These local controllers emulate the optimal behavior, under expected operating conditions, without the use of communication. However, they exhibit high implementation overhead with the need of individual programming of DER controllers, especially when there are many DERs or when new units are installed at a later stage. In this paper, we propose a clustering method to decrease the implementation overhead by reducing the individual DER controls into a smaller set while still achieving high performance. We show the performance of the method on a three-phase, unbalanced, low-voltage, distribution network.
URI: https://hdl.handle.net/20.500.14279/19539
ISSN: 19379234
DOI: 10.1109/JSYST.2020.3004277
Rights: © IEEE
Type: Article
Affiliation: Cyprus University of Technology 
ETH Zurich 
University of Costa Rica 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
manuscript.pdf802.38 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s)

347
Last Week
1
Last month
1
checked on 3 Ιαν 2025

Download(s)

393
checked on 3 Ιαν 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα