Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/19539
DC FieldValueLanguage
dc.contributor.authorKaragiannopoulos, Stavros-
dc.contributor.authorValverde, Gustavo-
dc.contributor.authorAristidou, Petros-
dc.contributor.authorHug, Gabriela-
dc.date.accessioned2021-02-08T10:57:54Z-
dc.date.available2021-02-08T10:57:54Z-
dc.date.issued2021-03-
dc.identifier.citationIEEE Systems Journal , 2021, vol. 15, no. 1, pp. 1467 - 1476en_US
dc.identifier.issn19379234-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/19539-
dc.description.abstractControllable Distributed Energy Resources (DERs) in Active Distribution Grids (ADGs) provide operational flexibility to system operators thereby offering the means to address various challenges. Existing local controllers for these resources are communication-free, robust, and cheap, but with sub-optimal performance compared to centralized approaches that heavily rely on monitoring and communication. Data-driven local controls can bridge the gap by providing customized local controllers designed from historical data, off-line optimization, and machine learning methods. These local controllers emulate the optimal behavior, under expected operating conditions, without the use of communication. However, they exhibit high implementation overhead with the need of individual programming of DER controllers, especially when there are many DERs or when new units are installed at a later stage. In this paper, we propose a clustering method to decrease the implementation overhead by reducing the individual DER controls into a smaller set while still achieving high performance. We show the performance of the method on a three-phase, unbalanced, low-voltage, distribution network.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Systems Journalen_US
dc.rights© IEEEen_US
dc.subjectActive distribution networksen_US
dc.subjectData-driven control designen_US
dc.subjectMachine learningen_US
dc.subjectOptimal power flow (OPF)en_US
dc.subjectOptimal controlen_US
dc.subjectTime-series clusteringen_US
dc.titleClustering Data-driven Local Control Schemes in Active Distribution Gridsen_US
dc.typeArticleen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationETH Zurichen_US
dc.collaborationUniversity of Costa Ricaen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countrySwitzerlanden_US
dc.countryCosta Ricaen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/JSYST.2020.3004277en_US
dc.relation.issue1en_US
dc.relation.volume15en_US
cut.common.academicyear2020-2021en_US
dc.identifier.spage1467en_US
dc.identifier.epage1476en_US
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextopen-
item.openairetypearticle-
crisitem.journal.journalissn1937-9234-
crisitem.journal.publisherIEEE-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4429-0225-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
manuscript.pdf802.38 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

Page view(s) 50

347
Last Week
0
Last month
1
checked on Jan 18, 2025

Download(s)

397
checked on Jan 18, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.