Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/19430
Τίτλος: PerfIso: Performance isolation for commercial latency-sensitive services
Συγγραφείς: Iorgulescu, Calin 
Azimi, Reza 
Kwon, Youngjin 
Elnikety, Sameh 
Syamala, Manoj 
Tomita, Paulo 
Narasayya, Vivek R. 
Herodotou, Herodotos 
Chen, Alex 
Zhang, Jack 
Wang, Junhua 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: CPU utilization;CPU-intensive;Machine resources;Production environments;Service level objective;Web searches;Search engines
Ημερομηνία Έκδοσης: Ιου-2018
Πηγή: USENIX Annual Technical Conference, 11-13 July 2018, Boston. United States
Link: https://www.usenix.org/system/files/conference/atc18/atc18-iorgulescu.pdf
Conference: USENIX Annual Technical Conference 
Περίληψη: Large commercial latency-sensitive services, such as web search, run on dedicated clusters provisioned for peak load to ensure responsiveness and tolerate data center outages. As a result, the average load is far lower than the peak load used for provisioning, leading to resource under-utilization. The idle resources can be used to run batch jobs, completing useful work and reducing overall data center provisioning costs. However, this is challenging in practice due to the complexity and stringent tail-latency requirements of latency-sensitive services. Left unmanaged, the competition for machine resources can lead to severe response-time degradation and unmet service-level objectives (SLOs). This work describes PerfIso, a performance isolation framework which has been used for nearly three years in Microsoft Bing, a major search engine, to colocate batch jobs with production latency-sensitive services on over 90,000 servers. We discuss the design and implementation of PerfIso, and conduct an experimental evaluation in a production environment. We show that colocating CPU-intensive jobs with latency-sensitive services increases average CPU utilization from 21% to 66% for off-peak load without impacting tail latency.
URI: https://hdl.handle.net/20.500.14279/19430
ISBN: 978-193913302-1
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Conference Papers
Affiliation: University of Texas at Austin 
EPFL 
Brown University 
Microsoft Research 
Cyprus University of Technology 
Microsoft Bing 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
atc18-iorgulescu.pdfFulltext962.98 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s)

298
Last Week
3
Last month
1
checked on 30 Ιαν 2025

Download(s)

54
checked on 30 Ιαν 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons