Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/19430
DC FieldValueLanguage
dc.contributor.authorIorgulescu, Calin-
dc.contributor.authorAzimi, Reza-
dc.contributor.authorKwon, Youngjin-
dc.contributor.authorElnikety, Sameh-
dc.contributor.authorSyamala, Manoj-
dc.contributor.authorTomita, Paulo-
dc.contributor.authorNarasayya, Vivek R.-
dc.contributor.authorHerodotou, Herodotos-
dc.contributor.authorChen, Alex-
dc.contributor.authorZhang, Jack-
dc.contributor.authorWang, Junhua-
dc.date.accessioned2020-11-18T10:51:14Z-
dc.date.available2020-11-18T10:51:14Z-
dc.date.issued2018-07-
dc.identifier.citationUSENIX Annual Technical Conference, 11-13 July 2018, Boston. United Statesen_US
dc.identifier.isbn978-193913302-1-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/19430-
dc.description.abstractLarge commercial latency-sensitive services, such as web search, run on dedicated clusters provisioned for peak load to ensure responsiveness and tolerate data center outages. As a result, the average load is far lower than the peak load used for provisioning, leading to resource under-utilization. The idle resources can be used to run batch jobs, completing useful work and reducing overall data center provisioning costs. However, this is challenging in practice due to the complexity and stringent tail-latency requirements of latency-sensitive services. Left unmanaged, the competition for machine resources can lead to severe response-time degradation and unmet service-level objectives (SLOs). This work describes PerfIso, a performance isolation framework which has been used for nearly three years in Microsoft Bing, a major search engine, to colocate batch jobs with production latency-sensitive services on over 90,000 servers. We discuss the design and implementation of PerfIso, and conduct an experimental evaluation in a production environment. We show that colocating CPU-intensive jobs with latency-sensitive services increases average CPU utilization from 21% to 66% for off-peak load without impacting tail latency.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCPU utilizationen_US
dc.subjectCPU-intensiveen_US
dc.subjectMachine resourcesen_US
dc.subjectProduction environmentsen_US
dc.subjectService level objectiveen_US
dc.subjectWeb searchesen_US
dc.subjectSearch enginesen_US
dc.titlePerfIso: Performance isolation for commercial latency-sensitive servicesen_US
dc.typeConference Papersen_US
dc.linkhttps://www.usenix.org/system/files/conference/atc18/atc18-iorgulescu.pdfen_US
dc.collaborationUniversity of Texas at Austinen_US
dc.collaborationEPFLen_US
dc.collaborationBrown Universityen_US
dc.collaborationMicrosoft Researchen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationMicrosoft Bingen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countrySwitzerlanden_US
dc.countryUnited Statesen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceUSENIX Annual Technical Conferenceen_US
cut.common.academicyear2017-2018en_US
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.languageiso639-1en-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-8717-1691-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
Files in This Item:
File Description SizeFormat
atc18-iorgulescu.pdfFulltext962.98 kBAdobe PDFView/Open
CORE Recommender
Show simple item record

Page view(s)

298
Last Week
3
Last month
1
checked on Jan 31, 2025

Download(s) 50

54
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons