Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/19400
Τίτλος: A first-person database for detecting barriers for pedestrians
Συγγραφείς: Theodosiou, Zenonas 
Partaourides, Harris 
Tolga, Atun 
Panayi, Simoni 
Lanitis, Andreas 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Dataset;Egocentric Vision;First-person View;Pedestrians;Safety;Visual Lifelogging
Ημερομηνία Έκδοσης: 10-Απρ-2020
Πηγή: 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 27-29 February 2020, Valletta, Malta
Link: https://www.scitepress.org/PublicationsDetail.aspx?ID=n9imSw1d0GY%3d&t=1
Conference: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications 
Περίληψη: Egocentric vision, which relates to the continuous interpretation of images captured by wearable cameras, is increasingly being utilized in several applications to enhance the quality of citizens life, especially for those with visual or motion impairments. The development of sophisticated egocentric computer vision techniques requires automatic analysis of large databases of first-person point of view visual data collected through wearable devices. In this paper, we present our initial findings regarding the use of wearable cameras for enhancing the pedestrians safety while walking in city sidewalks. For this purpose, we create a first-person database that entails annotations on common barriers that may put pedestrians in danger. Furthermore, we derive a framework for collecting visual lifelogging data and define 24 different categories of sidewalk barriers. Our dataset consists of 1796 annotated images covering 1969 instances of barriers. The analysis of the dataset by means of object classification algorithms, depict encouraging results for further study.
URI: https://hdl.handle.net/20.500.14279/19400
ISBN: 978-989758402-2
Rights: © SCITEPRESS CC BY-NC-ND 4.0
Type: Conference Papers
Affiliation: Research Center on Interactive Media, Smart Systems and Emerging Technologies 
Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
VISAPP_2020_205.pdfFulltext3.05 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s) 50

423
Last Week
1
Last month
7
checked on 28 Ιαν 2025

Download(s) 5

262
checked on 28 Ιαν 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons