Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/19298
Τίτλος: Vegetation detection using deep learning and conventional methods
Συγγραφείς: Ayhan, Bulent 
Kwan, Chiman 
Budavari, Bence 
Kwan, Liyun 
Lu, Yan 
Perez, Daniel 
Li, Jiang 
Skarlatos, Dimitrios 
Vlachos, Marinos 
Major Field of Science: Engineering and Technology
Field Category: Civil Engineering
Λέξεις-κλειδιά: CNN;Deep learning;DeepLabV3+;Machine learning;NDVI;Vegetation
Ημερομηνία Έκδοσης: 1-Αυγ-2020
Πηγή: Remote Sensing, 2020, vol. 12, no. 15, articl. no. 2502
Volume: 12
Issue: 15
Περιοδικό: Remote Sensing 
Περίληψη: Land cover classification with the focus on chlorophyll-rich vegetation detection plays an important role in urban growth monitoring and planning, autonomous navigation, drone mapping, biodiversity conservation, etc. Conventional approaches usually apply the normalized difference vegetation index (NDVI) for vegetation detection. In this paper, we investigate the performance of deep learning and conventional methods for vegetation detection. Two deep learning methods, DeepLabV3+ and our customized convolutional neural network (CNN) were evaluated with respect to their detection performance when training and testing datasets originated from different geographical sites with different image resolutions. A novel object-based vegetation detection approach, which utilizes NDVI, computer vision, and machine learning (ML) techniques, is also proposed. The vegetation detection methods were applied to high-resolution airborne color images which consist of RGB and near-infrared (NIR) bands. RGB color images alone were also used with the two deep learning methods to examine their detection performances without the NIR band. The detection performances of the deep learning methods with respect to the object-based detection approach are discussed and sample images from the datasets are used for demonstrations.
URI: https://hdl.handle.net/20.500.14279/19298
ISSN: 20724292
DOI: 10.3390/RS12152502
Rights: © by the authors.
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Article
Affiliation: Applied Research LLC 
Old Dominion University 
Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
remotesensing-12-02502-v2.pdfFulltext8.48 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

45
checked on 6 Νοε 2023

WEB OF SCIENCETM
Citations

37
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

306
Last Week
1
Last month
7
checked on 24 Δεκ 2024

Download(s)

150
checked on 24 Δεκ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons