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Abstract: Land cover classification with the focus on chlorophyll-rich vegetation detection plays an
important role in urban growth monitoring and planning, autonomous navigation, drone mapping,
biodiversity conservation, etc. Conventional approaches usually apply the normalized difference
vegetation index (NDVI) for vegetation detection. In this paper, we investigate the performance of deep
learning and conventional methods for vegetation detection. Two deep learning methods, DeepLabV3+

and our customized convolutional neural network (CNN) were evaluated with respect to their
detection performance when training and testing datasets originated from different geographical sites
with different image resolutions. A novel object-based vegetation detection approach, which utilizes
NDVI, computer vision, and machine learning (ML) techniques, is also proposed. The vegetation
detection methods were applied to high-resolution airborne color images which consist of RGB and
near-infrared (NIR) bands. RGB color images alone were also used with the two deep learning
methods to examine their detection performances without the NIR band. The detection performances
of the deep learning methods with respect to the object-based detection approach are discussed and
sample images from the datasets are used for demonstrations.

Keywords: NDVI; deep learning; machine learning; vegetation; DeepLabV3+; CNN

1. Introduction

Land cover classification [1] has been widely used in change detection monitoring [2], construction
surveying [3], agricultural management [4], green vegetation classification [5], identifying emergency
landing sites for UAVs [6,7], biodiversity conservation [8], land-use [9], and urban planning [10].
One important application of land cover classification is vegetation detection. In Skarlatos et al. [3],
chlorophyll-rich vegetation detection was a crucial stepping stone to improve the accuracy of the
estimated digital terrain model (DTM). Upon detection of vegetation areas, they were automatically
removed from the digital surface model (DSM) to have better DTM estimates. Bradley et al. [11]
conducted chlorophyll-rich vegetation detection to improve autonomous navigation in natural
environments for autonomous mobile robots operating in off-road terrain. Zare et al. [12] used
vegetation detection for mine detection to minimize false alarms since some vegetation such as round
bushes were mistakenly identified as mines by mine detection algorithms and they demonstrated
that vegetation detection improves mine detection results. Miura et al. [13] used vegetation detection
techniques for monitoring vegetation areas in the Amazon to monitor the temporal and spatial changes
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due to forest fires and growing population. Some conventional vegetation detection methods are
based on normalized difference vegetation index (NDVI) [14–16], which takes advantage of different
solar radiation absorption phenomena of green plants in the red spectral and near-infrared spectral
regions [17,18].

Since 2012, deep learning methods have found a wide range of applications for land cover
classification after several breakthroughs have been reported in a variety of computer vision
tasks, including image classification, object detection and tracking, and semantic segmentation.
Senecal et al. [19] used convolutional networks for multispectral image classification. Zhang et al. [20]
provided a comprehensive review of land cover classification and object detection approaches using
high-resolution imagery. The authors evaluated the performances of deep learning models against
traditional approaches and concluded that the deep-learning-based methods provide an end-to-end
solution and show better performance than the traditional pixel-based methods by utilizing both spatial
and spectral information whereas traditional pixel-based methods result in salt-and-pepper type noisy
land cover map estimates. A number of other works have also shown that semantic segmentation
classification with deep learning methods is quite promising in land cover classification [21–24].

DeepLabV3+ [25] is a semantic segmentation method that provided very promising results
in the PASCAL VOC-2012 data challenge [26]. For the PASCAL VOC-2012 dataset, DeepLabV3+

has currently the best ranking among several methods, including Pyramid Scene Parsing Network
(PSP) [27], SegNet [28], and Fully Convolutional Networks (FCN) [29]. Du et al. [30] used DeepLabV3+

for crop area (CA) mapping using RGB color images only and the authors compared its performance
with three other deep learning methods, UNet, PSP, and SegNet and three traditional machine learning
methods. The authors concluded that DeepLabV3+ was the best performing method and stated
its effectiveness in defining boundaries of the crop areas. Similarly, DeepLabV3+ was used for the
classification of remote sensing images and its performance ranking was reported to be better than
other investigated deep learning methods, including UNet, FCN, PSP, and SegNet [31–33]. These works
also proposed some original ideas to outperform DeepLabV3+ and extend on existing deep learning
architectures such as a novel FCN-based approach that aimed at the fusion of deep features [31],
a multi-scale context extraction module [32], and a novel patch attention module [33].

In Lobo Torres et al. [34], a contradictory result was presented in which the authors found
DeepLabV3+’s performance worse than FCN. The authors stated that much higher demand for training
samples was most likely necessary, which was not met by their dataset, and thus causing DeepLabV3+

to perform below its potential. One other factor contributing to this lower than expected performance
could be because they trained a DeepLabV3+ model from scratch without using any pre-trained
models as the initial model. There are also some recent works that modify DeepLabV3+’s architecture
so that more than three input channels can be used with it. Huang et al. [35] inserted 3D features in the
form of point clouds as a fourth input channel in addition to RGB image data. The authors replaced
the Xception backbone of DeepLabV3+ with ResNet101 with some other modifications in order to be
able to use more than three input channels with DeepLabV3+.

In Ayhan et al. [5], three separate DeepLabV3+ models were trained using RGB color images
originated from three different datasets which are collected at different resolutions and also have a
different image capturing hardware. The first model was trained using the Slovenia dataset [36] with
10 m per pixel resolution. The second model was trained using the DeepGlobe dataset [37] with 50 cm
per pixel resolution. The third model was trained using the airborne high-resolution image dataset
with two large size images with the names Vasiliko and Kimisala. The Vasiliko image with 20 cm per
pixel resolution was used for training and the two Kimisala images with 10 cm and 20 cm per pixel
resolutions were used for testing. It is reported in Ayhan et al. [5] that, among the three DeepLabV3+

models, the model trained with the Vasiliko dataset provided the best performance and the vegetation
detection results with DeepLabV3+ looked very promising.

This paper extends the work in Ayhan et al. [5] by applying DeepLabV3+, a custom CNN
method [38–40] and a novel object-based method, which utilizes NDVI, computer vision and machine
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learning techniques on the Vasiliko and Kimisala dataset that was used in Ayhan et al. [5] for comparison
of vegetation detection performance. Different from Ayhan et al. [5], NIR band information in the
Vasiliko and Kimisala dataset is also utilized in this work. The detection performances of DeepLabV3+,
the custom CNN method, and the object-based method are compared. In contrast to DeepLabV3+,
which uses only color images (RGB), our customized CNN method is capable of using RGB and NIR
bands (four bands total). In principle, DeepLabV3+ can handle more than three bands after a number
of architecture modifications as was discussed in Huang et al. [35] and Hassan [41]. In this work, we
used the default DeepLabV3+ architecture with three input channels. However, to utilize all four input
channels with DeepLabV3+ to some degree, we replaced the red (R) band with the NDVI band in the
training and test datasets, which is estimated by red (R) and NIR image bands, and kept the blue and
green image bands to make it three input channels in total, NDVI-GB.

The contributions of this paper are as follows:

• We introduced a novel object-based vegetation detection method, NDVI-ML, which utilized NDVI,
computer vision, and machine learning techniques with no need for training. The method is
simple and outperformed the two investigated deep learning methods in detection performance.

• We demonstrated the potential use of the NDVI band image as a replacement to the red (R) band in
the color image for DeepLabV3+ model training to take advantage of the NIR band while fulfilling
the three-input channels restriction in DeepLabV3+ and transfer learning from a pre-trained
RGB model.

• We compared the detection performances of DeepLabV3+ (RGB and NDVI-GB bands),
our CNN-based deep learning method (RGB and RGB-NIR bands), and NDVI-ML (RGB-NIR).
This demonstrated that DeepLabV3+ detection results using RGB color bands only were better
than those obtained by conventional methods using the NDVI index only and were also quite
close to NDVI-ML’s results which used NIR band and several sophisticated machine learning and
computer vision techniques.

• We discussed the underlying reasons why NDVI-ML could be performing better than
the deep learning methods and potential strategies to further boost the deep learning
methods’ performances.

This paper is organized as follows. In Section 2, we describe the dataset and the vegetation
detection methods used for training and testing. Section 3 summarizes the results using various
methods. Section 4 contains some discussions about the results. A few concluding remarks are
provided in Section 5.

2. Materials and Methods

We first introduce the dataset in Section 2.1 followed by the two deep learning methods and our
object-based vegetation detection method, NDVI-ML, in Sections 2.2–2.4. A block diagram of the used
dataset and the applied methods in this paper can be seen in Figure 1.
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The dataset used in this work was originally used in Skarlatos and Vlachos [3] and belongs to 
two studied sites known as Vasiliko in Cyprus and Kimisala in Rhodes Island. UAV photography 
and a modified non-calibrated near-infrared camera were used to acquire the data with two separate 
UAV flights. Both flights were performed with SwingletCam UAV on different days. In the first flight, 
a Canon IXUS 220HS camera was flown at an average flight height of 78 m. In the second flight, a 
modified near-infrared Canon PowerShot ELPH 300HS camera was used with a flight height of 100 
m. Both cameras were provided by SensFly, which is a UAV manufacturer. Agisoft’s Photoscan was 
used to process the captured UAV photography and to create two orthophotos. Using the extracted 
Digital Surface Model of the two sites, color RGB and NIR orthophotos were generated. For the 
overlapping and co-registration of the orthophotos, a common bundle adjustment was performed 
with all the RGB and NIR photos [3]. 

2.1.1. Vasiliko Site Data Used for Training 

The height and width dimensions of the Vasiliko image (RGB and NIR) used in the 
investigations as training data are 3450 × 3645. The image resolution of the Vasiliko image is 20 cm 
per pixel. The image area used in the investigations thus corresponds to an area of ~0.5 km². For 
investigations with DeepLabV3+, this image is partitioned into 1764 overlapping image tiles of size 
512 × 512. The number of overlapping rows for two consecutive images along column direction is set 
to 440, and the number of overlapping columns for two consecutive images along row direction is set 
to 435. This partitioning is conducted to increase the number of image patches in the Vasiliko training 
dataset and can be considered as data augmentation by introducing shifted versions of the image 
patches. The number of overlapping pixels in row and column directions are set to high numbers to 
increase the number of image batches in the training data set as much as possible. This image is 
annotated with respect to four land covers. Two color images from the Vasiliko dataset and their land 
cover annotations can be seen in Figure 2. 
  

Figure 1. Block diagram showing the used dataset and applied methods. mIoU is the
mean-intersection-of-union metric.

2.1. Dataset Used for Training and Testing

The dataset used in this work was originally used in Skarlatos and Vlachos [3] and belongs to
two studied sites known as Vasiliko in Cyprus and Kimisala in Rhodes Island. UAV photography
and a modified non-calibrated near-infrared camera were used to acquire the data with two separate
UAV flights. Both flights were performed with SwingletCam UAV on different days. In the first flight,
a Canon IXUS 220HS camera was flown at an average flight height of 78 m. In the second flight,
a modified near-infrared Canon PowerShot ELPH 300HS camera was used with a flight height of 100 m.
Both cameras were provided by SensFly, which is a UAV manufacturer. Agisoft’s Photoscan was used
to process the captured UAV photography and to create two orthophotos. Using the extracted Digital
Surface Model of the two sites, color RGB and NIR orthophotos were generated. For the overlapping
and co-registration of the orthophotos, a common bundle adjustment was performed with all the RGB
and NIR photos [3].

2.1.1. Vasiliko Site Data Used for Training

The height and width dimensions of the Vasiliko image (RGB and NIR) used in the investigations
as training data are 3450 × 3645. The image resolution of the Vasiliko image is 20 cm per pixel.
The image area used in the investigations thus corresponds to an area of ~0.5 km2. For investigations
with DeepLabV3+, this image is partitioned into 1764 overlapping image tiles of size 512 × 512.
The number of overlapping rows for two consecutive images along column direction is set to 440,
and the number of overlapping columns for two consecutive images along row direction is set to 435.
This partitioning is conducted to increase the number of image patches in the Vasiliko training dataset
and can be considered as data augmentation by introducing shifted versions of the image patches.
The number of overlapping pixels in row and column directions are set to high numbers to increase
the number of image batches in the training data set as much as possible. This image is annotated
with respect to four land covers. Two color images from the Vasiliko dataset and their land cover
annotations can be seen in Figure 2.
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ground truth land cover map for mari_20_3_8; (c) color image for mari_20_42_4; (d) ground truth land 
cover map for mari_20_42_4. 

2.1.2. Kimisala Site Data Used for Testing 

This site is part of the Kimisala area in the southwestern part of the island of Rhodes and contains 
many scattered archaeological sites. Regarding the Kimisala image used in the investigations, it 
corresponds to an area of ~0.05 km². There are two images of the same site with two different 
resolutions (10 cm per pixel and 20 cm per pixel). In the Kimisala test images, land covers in the form 
of trees, shrubs, barren land, and archaeological sites are present. These land covers are categorized 
into two major land cover classes which are vegetation (tree/shrub) and non-vegetation (barren land 
and archaeological site). The 10 cm resolution Kimisala test image is annotated with respect to the 
two land covers (vegetation and non-vegetation). The land cover map for the Kimisala-20 test image 
is generated by resizing the annotated land cover map generated for the Kimisala-10 test image. The 
color Kimisala images for the 10 and 20 cm resolutions and their land cover annotations can be seen 
in Figure 3. It is worth mentioning that the Kimisala-10 test image is 1920 × 2680 in size and the 
Kimisala-20 test image is 960 × 1340 in size. Both test images are split into non-overlapping 512 × 512 
image tiles when testing with the trained DeepLabV3+ models with the exception of the tiles that 

Figure 2. Sample images from Vasiliko dataset and their annotations (silver color corresponds to barren
land, green color corresponds to tree/shrub/grass, red color corresponds to urban land, and blue color
corresponds to water in land cover map annotations). (a) Color image for mari_20_3_8; (b) ground
truth land cover map for mari_20_3_8; (c) color image for mari_20_42_4; (d) ground truth land cover
map for mari_20_42_4.

2.1.2. Kimisala Site Data Used for Testing

This site is part of the Kimisala area in the southwestern part of the island of Rhodes and
contains many scattered archaeological sites. Regarding the Kimisala image used in the investigations,
it corresponds to an area of ~0.05 km2. There are two images of the same site with two different
resolutions (10 cm per pixel and 20 cm per pixel). In the Kimisala test images, land covers in the form of
trees, shrubs, barren land, and archaeological sites are present. These land covers are categorized into
two major land cover classes which are vegetation (tree/shrub) and non-vegetation (barren land and
archaeological site). The 10 cm resolution Kimisala test image is annotated with respect to the two land
covers (vegetation and non-vegetation). The land cover map for the Kimisala-20 test image is generated
by resizing the annotated land cover map generated for the Kimisala-10 test image. The color Kimisala
images for the 10 and 20 cm resolutions and their land cover annotations can be seen in Figure 3.
It is worth mentioning that the Kimisala-10 test image is 1920 × 2680 in size and the Kimisala-20 test
image is 960 × 1340 in size. Both test images are split into non-overlapping 512 × 512 image tiles when
testing with the trained DeepLabV3+ models with the exception of the tiles that form the last portion
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of the rows and columns of the image in which there is a slight overlapping. In the ground truth and
estimated land cover maps for the Kimisala test images, a yellow color is used to annotate vegetation
and a blue color is used to annotate non-vegetation land covers.
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Figure 3. The color Kimisala images for the 10 and 20 cm resolutions and their ground truth land cover
annotations (yellow: Vegetation (tree/shrub), blue: Non-vegetation (barren land and archaeological
sites)). (a) Color image (Kimisala-10); (b) color image (Kimisala-20); (c) land cover map (Kimisala-10);
(d) land cover map (Kimisala-20).

2.2. DeepLabV3+

DeepLabV3+ uses the Atrous Spatial Pyramid Pooling (ASPP) mechanism which exploits the
multi-scale contextual information to improve segmentation [42]. Atrous (which means holes)
convolution has advantages over the standard convolution by providing responses at all image
positions and while the number of filter parameters and the number of operations stays constant [42].
DeepLabV3+ has an encoder-decoder network structure. The encoder part consists of a set of processes
that reduce the feature maps and capture semantic information and the decoder part recovers the
spatial information and result in sharper segmentations. The block diagram of DeepLabV3+ can be
seen in Figure 4.
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Figure 4. Block diagram of DeepLabV3+ [42].

A PC with Windows 10 operating system, a GPU card (RTX2070), and 16GB memory is
used for DeepLabv3+ model training and testing which uses the TensorFlow framework to run.
For training a land cover model using the training datasets, the weights of a pre-trained model
with the exception of the logits are used as the starting point and these weights are fine-tuned with
further training. These initial weights belong to a pre-trained model for the PASCAL VOC 2012
dataset (“deeplabv3_pascal_train_aug_2018_01_04.tar.gz”). This model was based on the Xception-65
backbone [42]. Because the number of land covers in the Vasiliko and Kimisala dataset is different from
the number of classes in the PASCAL VOC-2012 dataset, the logit weights in the pre-trained model are
excluded. The training parameters used for training a model with DeepLabv3+ in this work can be
seen in Table 1.

Table 1. Training parameters used in DeepLabV3+.

Training Parameter Value

Learning policy Poly
Base learning rate 0.0001

Learning rate decay factor 0.1
Learning rate decay step 2000

Learning power 0.9
Training number of steps ≥100,000

Momentum 0.9
Train batch size 2
Weight decay 0.00004
Train crop size ‘513,513’

Last layer gradient multiplier 1
Upsample logits True

Drop path keep prob 1
tf_initial_checkpoint deeplabv3_pascal_train_aug
initialize_last_layer False

last_layers_contain_logits_only True
slow_start_step 0

slow_start_learning_rate 1 × 10−4

fine_tune_batch_norm False
min_scale_factor 0.5
max_scale_factor 2

scale_factor_step_size 0.25
atrous_rates [6,12,18]

output_stride 16
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2.3. CNN Model

Since the used DeepLabV3+ pre-trained model (“deeplabv3_pascal_train_aug_2018_01_04.tar.gz”)
utilized thousands of RGB images in PASCAL VOC 2012 dataset for training [26], it is difficult to
retrain it from scratch to accommodate four bands (RGB+NIR) because we do not have many NIR
images that are co-registered with those RGB bands. Our own customized CNN model, on the other
hand, can handle up to four bands. In addition to using our CNN model with RGB-NIR bands, we
also used it with three bands (RGB) to compare with the DeepLabV3+ results (RGB).

We used the same structure for the CNN model as in our previous work [38] for soil detection,
except the filter size in the first convolution layer changed accordingly to be consistent with the
input patch sizes. The input image with N bands is extracted into 7 × 7 image patches each with a
size of 7 × 7 × N. These image patches are input to the CNN model. For the case when RGB image
bands are used, N is 3 and when the NIR band is included, N becomes 4. The CNN model has four
convolutional layers and a fully connected layer with 100 hidden units. The CNN model structure is
shown in Figure 5. The 3D convolution filters in the convolutional layers are set to 3 × 3 × N in the first
convolutional layer, 3 × 3 × 20 in the second and third layers and to 1 × 1 × 100 in the fourth layer.
The naming convention used for the convolutional layers in Figure 5 indicates the number of filters
and the filter size. As an example, 20 @ 3 × 3 × N, in the first layer indicates 20 convolutional filters
with a size of 3 × 3 ×N. The stride in all four convolution layers is set to 1 (shown as 1 × 1 × 1) meaning
the convolution filter is moved one pixel at a time in each dimension. When we designed the network,
we tried different configurations for the number of layers and the size of each layer and selected the one
that provided the best results. We did this for all the layers (convolutional and fully connected layers).
The choice of “100 hidden units” in the fully connected layer was the outcome of our design studies.

Each convolutional layer utilizes the Rectified Linear Unit (ReLu) as an activation function, the last
fully connected layer uses the SoftMax function for classification. We added a dropout layer for each
convolutional layer with a dropout rate of ‘0.1’ to mitigate overfitting [43] after observing that ‘0.1’
dropout value performed better than two other dropout values, which are ‘0.05’ and ‘0.2’.
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2.4. NDVI-ML

We developed an object-based vegetation detection method, NDVI-ML, which utilizes NDVI [44],
machine learning (ML) techniques for classification and computer vision techniques for segmentation.
The block diagram of NDVI-ML can be found in Figure 6.

The NDVI-ML method identifies the potential vegetation candidates using an NDVI
threshold of zero. The candidate vegetation pixels are split into connected components using the
Dulmage-Mendelsohn decomposition [45] of the node pairs’ adjacency matrix [46] by assigning each
candidate vegetation pixel as a node and forming the neighboring node pairs using the 8-neighborhood
connectivity. Each connected component is considered as a separate vegetation object entity with its
own vegetation map, sub-vegetation map.
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For each vegetation object, a number of rules with respect to the size of the vegetation objects
and the amplitude of RGB content are applied. If the number of pixels of the connected component
vegetation object contains only a few pixels, these pixels are labeled as ‘non-vegetation’ since this
small size of a vegetation object candidate is not of interest to detect. For this, the number of pixels
of the object is compared with a threshold, minVegObj. If the number of pixels in the vegetation
object is bigger than minVegObj, but smaller than another set threshold, medVegObj, among these
pixels the ones that have red or blue content larger than green content are labeled as ‘non-vegetation’.
If, on the other hand, the number of pixels is larger than medVegObj, a more sophisticated process is
applied to classify these pixels. This process included a two-class Gaussian Mixture Model (GMM) [47],
which are fit to the RGB values of the connected component object pixels. The two GMMs split these
pixels into ‘vegetation’ and ‘non-vegetation’ classes. Among the identified GMMs, the one that has a
higher green content value is considered as the ‘vegetation’ class and the other as the ‘non-vegetation’.
If the difference between the mean green content values in the two GMMs exceeds a set threshold,
thrGMMGreen, the spatial information of the identified non-vegetation class pixels are then checked to
decide whether they are ‘non-vegetation’ pixels (such as shadow) or they are dark-toned vegetation
pixels which happen to be located inside the inner sections of the vegetation object. For extracting the
spatial information, an average filter is used with consideration of the image resolution (which is set to
5 × 5 in our investigations). When applying this average filter, if the pixel of interest is a dark-toned
vegetation object that happens to fall in inner parts of the vegetation object, the averaged filtered value
is expected to have higher green content since it is assumed that there will be several vegetation pixels
around it with green content being dominant and the average filtering would thus increase the green
content value of this pixel. Similarly, if it is a shadow pixel that happens to fall on the boundary sections
of the vegetation object, then because the neighborhood of the pixel would have more ‘non-vegetation’
pixels, the average filtering would result in a decrease in the green content value of this pixel. Thus,
the averaging filter helps to extract spatial information which is utilized to separate the shadow-like
non-vegetation pixels from the dark-toned vegetation pixels that happen to fall in inner parts of the
vegetation object.

The pseudocode of the NDVI-ML processing steps can be seen in Table 2. Other than
these processing steps, NDVI-ML has one other final estimated vegetation map cleaning process.
The pseudocode of the final decision map cleaning process can be seen in Table 3. In this cleaning
process, it is basically checked if there are any connected components remaining with a very small
number of pixels after the applied processing steps and if there are any connected components where
the green content is lower than red or blue content. If there are cases like this, the pixels of these
connected components are also labeled as ‘non-vegetation’ in the final estimated vegetation map.
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Table 2. Pseudocode of the machine learning processing steps in the normalized difference vegetation
index-machine learning (NDVI-ML) method.

1: for Each connected component vegetation object, ccvo,
2: if number of pixels in ccvo < minVegObj,
3: Assign ccvo pixels as “Non-vegetation” in its sub-vegetation map
4: end
5: if minVegObj < number of pixels in ccvo < medVegObj,
6: Find the pixels in ccvo with red content (R) > green content (G), or blue content (B) > green content (G)
7: Remove these identified pixels from ccvo
8: Assign all the remaining pixels in ccvo as “Vegetation” in its sub-vegetation map
9: end
10: if number of pixels in ccvo > medVegObj,
11: Identify the pixels in ccvo with red content (R)>green content(G), or blue content(B)>green content (G)
12: Label the identified pixels as “Non-vegetation” in its sub-vegetation map
13: Exclude the identified pixels from ccvo
14: if the number of pixels in ccvo > minGMM
15: Fit a two-class GMM to split ccvo pixels into “Vegetation” and “Non-vegetation” classes
16: Assign the class with lower green content (G) as “Non-vegetation”, higher (G) content as “Vegetation”
17: if (averaged green content difference in Vegetation and Non-vegetation class) > thrGMMGreen
18: Extract spatial information of the identified Non-vegetation pixels to decide whether they are

shadow-related Non-vegetation pixels or dark-toned Vegetation pixels which are located
inside the vegetation object.

19: - Apply a 5x5 average filter to the Non-vegetation class pixels to form spatial statistical features
20: - Apply a two-class GMM to the spatial features to split them into two classes, Dark-toned
vegetation and Shadow.
21: - Among the two GMM classes, assign the one with the lower green content as Non-vegetation.
22: Exclude the identified Non-vegetation pixels from ccvo
23: Apply a closing morphology operation to ccvo
24: Assign the remaining pixels in ccvo after closing operation as “Vegetation” in its sub-veg. map
25: else
26: Apply a closing morphology operation to ccvo
27: Assign the remaining pixels in ccvo after closing operation as “Vegetation” in its sub-veg. map
28: end
29: else
30: Apply a closing morphology operation to ccvo pixels
31: Assign the remaining pixels in ccvo after closing operation as “Vegetation” in its sub-veg. map
32: end
33: end
34: Generate final vegetation map using all sub-veg. maps

Table 3. Final vegetation map cleaning process in the NDVI-ML method.

1: Find the connected component vegetation objects in the final vegetation map
2: for Each connected component,
3: if the number of pixels in the connected component < minVegObj,
4: Label all pixels of the connected component to Non-vegetation
5: else
6: Compute the mean RGB values for the pixels of the connected component
7: if (R) or (B) content in the mean RGB values of the connected component is higher than (G) content,
8: Label the pixels of the connected component as “Non-vegetation”
9: else
10: Label the pixels of the connected component as “Vegetation”
11: end
12: end
13: end
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2.5. Performance Comparison Metrics

Accuracy and mean-intersection-over-union (mIoU) measures [48] are used to assess the
performance of DeepLabV3+, custom CNN, and NDVI-ML methods on the two Kimisala test
images. Suppose TP corresponds to the true positives, FP is the false positives, FN is the false negatives,
and TN is the true negatives. The accuracy measure is computed as:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

The intersection-over-union (IoU) measure also known as the Jaccard similarity coefficient [48] for
a two-class problem can be mathematically expressed using the same notations as:

IoU =
TP

TP + FP + FN
(2)
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The mean-intersection-over-union (mIoU) measure simply takes the averages of IoU for all classes.

3. Results

3.1. DeepLabV3+

Results Using DeepLabV3+ Model Trained with Vasiliko Dataset

In our recent work [5], DeepLabV3+ models were trained using RGB color images of three datasets,
which are the Slovenia [36], DeepGlobe datasets [37], and Vasiliko dataset and the trained models were
all tested on the Kimisala test data. For completeness of this paper, the DeepLabV3+ results with these
three datasets are shown in Table 4. Due to significant resolution differences between the training
data (Slovenia data: 10 m resolution; DeepGlobe: 0.5 m resolution) and the testing data (10 cm and
20 cm), the results of these two DeepLabV3+ models on the Kimisala test dataset were found very
poor. Table 4 shows the performance metrics obtained with the three DeepLabV3+ models which are
trained using three different datasets of different image resolutions and image capturing hardware for
the Kimisala-10 test image. It can be noticed that the model trained with the Vasiliko dataset has the
highest detection scores. The DeepLabV3+ model trained with Vasiliko dataset also provided the best
performance on the Kimisala-20 test image. The resultant performance metrics for the Kimisala-20
test image with three DeepLabV3+ models can be seen in Table 5. The detection results for the two
Kimisala test images using the DeepLabV3+ model trained with the Vasiliko dataset and the estimated
vegetation maps can be seen in Figure 7. In the DeepLabV3+ results shown in Figure 7a,b, green color
pixels correspond to tree/shrub/grass, the silver color corresponds to the barren land and the red color
corresponds to urban land).

Table 4. Accuracy and mIoU measures for Kimisala-10 vegetation detection.

Method Accuracy mIoU (Vegetation & Non-Vegetation)

DeepLabV3+ (model trained with Slovenia) [5] 0.6171 0.4454
DeepLabV3+ (model trained with DeepGlobe [5] Very poor Very poor

DeepLabV3+ (model trained with Vasiliko) 0.8578 0.7435

Table 5. Accuracy and mIoU measures for Kimisala-20 vegetation detection.

Method Accuracy mIoU (Vegetation & Non-Vegetation)

DeepLabV3+ (model trained with Slovenia) [5] 0.6304 0.4355
DeepLabV3+ (model trained with DeepGlobe) [5] Very poor Very poor

DeepLabV3+ (model trained with Vasiliko) 0.8015 0.6541
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silver: Barren land, red: urban land); (b) DeepLabV3+ results for Kimisala-20 (green: Tree/shrub/grass, 
silver: Barren land, red: urban land); (c) DeepLabV3+ estimated vegetation map for Kimisala-10 
(yellow: Vegetation, blue: Non-vegetation); (d) DeepLabV3+ estimated vegetation map Kimisala-20 
(yellow: Vegetation, blue: Non-vegetation); (e) detected vegetation with DeepLabV3+ for Kimisala-
10; (f) detected vegetation with DeepLabV3+ for Kimisala-20. 

As mentioned earlier, the DeepLabV3+ pre-trained model that was used for the initialization of 
our own training model’s weights was trained with thousands of RGB images. It is, however, 
challenging to extend DeepLabV3+ model to incorporate more than three input channels, such as 
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model, not only a lot of training data are needed that include the NIR band in addition to RGB color 

Figure 7. DeepLabV3+ vegetation detection results for the two Kimisala test images using the model
trained with the Vasiliko dataset. (a) DeepLabV3+ results for Kimisala-10 (green: Tree/shrub/grass,
silver: Barren land, red: urban land); (b) DeepLabV3+ results for Kimisala-20 (green: Tree/shrub/grass,
silver: Barren land, red: urban land); (c) DeepLabV3+ estimated vegetation map for Kimisala-10
(yellow: Vegetation, blue: Non-vegetation); (d) DeepLabV3+ estimated vegetation map Kimisala-20
(yellow: Vegetation, blue: Non-vegetation); (e) detected vegetation with DeepLabV3+ for Kimisala-10;
(f) detected vegetation with DeepLabV3+ for Kimisala-20.

As mentioned earlier, the DeepLabV3+ pre-trained model that was used for the initialization
of our own training model’s weights was trained with thousands of RGB images. It is, however,
challenging to extend DeepLabV3+ model to incorporate more than three input channels, such as
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including a NIR band in addition to the RGB bands. This is because in order to build a satisfactory
model, not only a lot of training data are needed that include the NIR band in addition to RGB color
images but also significant GPU power that can conduct a proper training with batch sizes larger than 16.
This is because, for efficient model training, larger batch sizes are recommended in DeepLabV3+ [49].
Moreover, the DeepLabV3+ architecture, which is originally designed for three input channels, RGB,
needs to be adjusted accordingly to accommodate four-channel input images. With four-channel input
images, the existing pre-trained models, which are for RGB, cannot be used directly and there is a need
for training a model from scratch or at least modifying the DeepLabV3+ architecture such that only the
weights for the newly added image bands can be learned and the weights of RGB input channels can
be initialized by pre-trained model weights via transfer learning [41].

In this work, we used the default DeepLabV3+ architecture and considered using more than three
input channels with DeepLabV3+ as future work. However, we conducted an interesting investigation
in which we replaced the red (R) band with the NDVI band and kept the green (G) and blue (B) bands
(NDVI-GB) in the training data when training a DeepLabV3+ model. Since the NDVI band is computed
using red (R) and NIR bands, all four bands are involved in model training to some extent, while also
fulfilling DeepLabV3+’s three input channels restriction. The resultant NDVI values which originally
take values between −1 to 1 are scaled such that they take values between 0 and 255 which is the case
for the color band image values.

When we started DeepLabV3+ model training for NDVI-GB bands from scratch with a higher
learning rate, 0.1, even though the total loss values during training dropped nicely after 200K training
steps, as can be seen in Figure 8, the final DeepLabV3+ predictions for the test dataset and even for the
training set were all black color indicating that the model trained from scratch was not reliable.
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Next, we used the same NDVI-GB training data set and used the pre-trained model’s weights
(pre-trained model for PASCAL VOC 2012 dataset for RGB images) to initialize our training model’s
weights. Even though the training dataset has the NDVI bands instead of red (R) band, the total loss
converged nicely during training as can be seen in Figure 9 and the detection results also improved
slightly for both Kimisala test datasets in comparison to the results using the DeepLabV3+ model
trained using RGB bands. The results for the two Kimisala test datasets can be seen in Table 6.
Considering that an RGB-based pre-trained model is used as the initial model whereas the training
dataset does not contain the R band but NDVI instead, it is found highly interesting that slightly better
detection results can be still obtained.
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Table 6. Accuracy and mIoU measures for Kimisala-10 and Kimisala-20 vegetation detection using
DeepLabV3+ models trained with RGB and NDVI-G-B bands (both models were initialized using
pre-trained models for RGB color images when starting training).

Test Dataset Method Accuracy mIoU

Kimisala-10 DeepLabV3+ (model trained with Vasiliko, RGB) 0.8578 0.7435
DeepLabV3+ (model trained with Vasiliko, NDVI-G-B 0.8601 0.7495

Kimisala-20 DeepLabV3+ (model trained with Vasiliko, RGB) 0.8015 0.6541
DeepLabV3+ (model trained with Vasiliko, NDVI-G-B 0.8089 0.6677

3.2. CNN Results

The first investigation with the CNN model for the Vasiliko training and two Kimisala test datasets
was to examine its detection performance when RGB (color images) and RGB-NIR bands are used.
Using a subset of 30,000 training samples per class out of the complete training data (Class 1—Barren:
1469178 and Class 2—Trees: 935340), 7 × 7 RGB patches for each class, it was observed that for this
case, the overall classification rate is 76.2% (Class 0, vegetation, has a 90.1% accuracy and Class 1,
no-vegetation, has a 65.8% accuracy). Table 7 shows the classification accuracy with CNN for RGB
only and RGB-NIR cases. It can be noticed that with the addition of the NIR band, the overall accuracy
improves by ~5% with our custom CNN method.

Table 7. Classification accuracy with CNN (two-class training model, vegetation and non-vegetation)
using 30,000 training samples.

Bands Patch Size Training Data Per Class Overall Accuracy

RGB and NIR (4 bands) 7 × 7 30,000 0.8091
RGB (3 bands) 7 × 7 30,000 0.7620

Next, we conducted a full investigation with the CNN model on the Vasiliko/Kimisala datasets to
further improve the classification accuracy. Due to memory issues, we could not feed the whole Vasiliko
image for training. Instead, we had to divide the training image into four quadrants. The performance
metrics were generated by sequentially training the model on each of the four quadrants of the Vasiliko
dataset. In order to do this, we trained an initial model on the first quadrant and then updated the
weights using the following quadrant. This step was repeated for the final three quadrants of the
image. For training the model sequentially, we used a patch size of 7, the learning rate of 0.01, and used
all the possible training samples in the quadrant. Table 8 summarizes the results for our sequential
approach. We only generated results using the Kimisala-20 test image because Kimisala-10 is very large
in size. The average overall accuracy for the CNN model reached 0.8298, which was better than the
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earlier results in Table 7 in which only 30,000 samples were used to train the CNN model. Here, all the
training samples in the Vasiliko image were used. The resultant vegetation map is shown in Figure 10.

Table 8. Performance metrics using different quadrants of the Vasiliko dataset for sequential training.
Kimisala 20-cm image was used in testing. Four bands were used.

Quadrant Accuracy mIoU

Q1 0.8126 0.6979
Q2 0.8342 0.6775
Q3 0.8470 0.7041
Q4 0.8253 0.6861

Avg 0.8298 0.6914
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Figure 10. CNN vegetation detection results for the Kimisala-20 test image using the CNN model
trained with the Vasiliko dataset. (a) Estimated vegetation binary map Kimisala-20 using CNN (yellow:
Vegetation, blue: Non-vegetation); (b) detected vegetation using CNN for Kimisala-20.

3.3. NDVI-ML Results

Table 9 summarizes the results of the NDVI-ML method for the Kimisala-10 test image. As a
baseline comparison benchmark to NDVI-ML, the NDVI band image only is transformed into binary
detection maps using two different NDVI thresholds, which are 0.0 and 0.09, respectively. These
NDVI-only detection results with two different thresholds are also included in Table 9. It can be seen
that the proposed NDVI-ML improved the performance of NDVI-only results significantly. We also
observed the same trend for the Kimisala-20 image as can be seen in Table 10. The vegetation detection
results for the two Kimisala test images using NDVI-only and NDVI-ML can be seen in Figures 11
and 12, respectively. When applying the NDVI-ML approach, the parameter minVegObj is set to 70 for
the Kimisala-10 test image and to 35 for the Kimisala-20 test image. Regarding the other NDVI-ML
parameters, medVegObj is set to 250 and minGMM is set to 200 for both Kimisala-10 and Kimisala-20
test images. In comparison to the ground truth land cover map, the NDVI-ML approach results are
found to be highly accurate and better than the detection results of the two deep learning methods.

Table 9. Accuracy and mIoU measures for Kimisala-10 vegetation detection.

Method Accuracy mIoU (Vegetation & Non-Vegetation)

NDVI only (NDVI threshold = 0.0) 0.7565 0.6047
NDVI only (NDVI threshold = 0.09) 0.7234 0.5662

NDVI - ML 0.8730 0.7737
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Table 10. Accuracy and mIoU measures for Kimisala-20 vegetation detection.

Method Accuracy mIoU (Vegetation & Non-Vegetation)

NDVI only (NDVI threshold = 0.0) 0.7563 0.6045
NDVI only (NDVI threshold = 0.09) 0.7232 0.5659

NDVI - ML 0.8578 0.7487
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Figure 11. NDVI only (threshold = 0) vegetation detection results for the two Kimisala test images.
(a) NDVI-only estimated vegetation map (Kimisala-10) (yellow: Vegetation, blue: Non-vegetation);
(b) NDVI-only estimated vegetation map (Kimisala-20) (yellow: Vegetation, blue: Non-vegetation);
(c) Detected vegetation with NDVI only (Kimisala-10); (d) Detected vegetation with NDVI only
(Kimisala-20).
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Figure 12. NDVI + ML vegetation detection results for the two Kimisala test images. (a) NDVI +

ML estimated vegetation map (Kimisala-10) (yellow: Vegetation, blue: Non-vegetation); (b) NDVI +

ML estimated vegetation map (Kimisala-20) (yellow: Vegetation, blue: Non-vegetation); (c) detected
vegetation with NDVI + ML (Kimisala-10); (d) detected vegetation with NDVI + ML (Kimisala-20).

3.4. Performance Comparisons

Tables 11 and 12 summarizes the resultant performance metrics of NDVI-ML and deep
learning-based methods for the two Kimisala test data. It can be seen that in both metrics, NDVI-ML
performs better than the deep learning methods. The two DeepLabV3+ models trained with Vasiliko
dataset (RGB and NDVI-GB input channels) follow closely the NDVI-ML approach in terms of accuracy.
DeepLabV3+ results with NDVI-GB input channels are found to be slightly better than the DeepLabV3+

results with RGB input channels only. Among the three DeepLabV3+ models, Vasiliko model performs
the best. Because the image resolutions in Slovenia (10 m) and DeepGlobe (50 cm) training datasets are
quite different than the resolutions of the Kimisala test images (10 cm and 20 cm) and also because
the image characteristics of Kimisala test images are quite different from the ones in Slovenia and
DeepGlobe datasets, these two training models were considered to be performing poorly. One other
aspect that must be favoring the Vasiliko DeepLabV3+ model over the other two models is that both
Kimisala test images and the Vasiliko training dataset images were collected with the same camera
systems. Our customized CNN model (RGB+NIR) performance was evaluated only on the Kimisala-20
test image. The customized CNN results were found to be better than DeepLabV3+, but were still
worse than NDVI-ML.
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Table 11. Accuracy and mIoU measures for Kimisala-10 vegetation detection.

Method Accuracy mIoU (Vegetation & Non-Vegetation)

NDVI only (NDVI threshold = 0.0) 0.7565 0.6047
NDVI only (NDVI threshold = 0.09) 0.7234 0.5662

NDVI - ML (4 bands, RGB+NIR) 0.8730 0.7737
DeepLabV3+ (model trained with Slovenia, RGB) [5] 0.6171 0.4454

DeepLabV3+ (model trained with DeepGlobe, RGB [5]) Very poor Very poor
DeepLabV3+ (model trained with Vasiliko, RGB) [5] 0.8578 0.7435

DeepLabV3+ (model trained with Vasiliko, NDVI-G-B) 0.8601 0.7495

Table 12. Accuracy and mIoU measures for Kimisala-20 vegetation detection.

Method Accuracy mIoU (Vegetation & Non-Vegetation)

NDVI only (NDVI threshold = 0.0) 0.7563 0.6045
NDVI only (NDVI threshold = 0.09) 0.7232 0.5659

NDVI - ML (4 bands, RGB+NIR) 0.8578 0.7487
DeepLabV3+ (model trained with Slovenia, RGB) [5] 0.6304 0.4355

DeepLabV3+ (model trained with DeepGlobe, RGB) [5] Very poor Very poor
DeepLabV3+ (model trained with Vasiliko, RGB) [5] 0.8015 0.6541

DeepLabV3+ (model trained with Vasiliko, NDVI-G-B) 0.8089 0.6677
Our customized CNN (4 bands, RGB+NIR) 0.8298 0.6914

4. Discussion

In Kimisala-20 (20 cm resolution) test dataset, DeepLabV3+ (RGB only) had 0.8015 overall accuracy
whereas our customized CNN model achieved an accuracy of 0.7620 with RGB bands and reached an
accuracy of 0.8298 if the RGB and NIR bands were all used (four bands). The DeepLabV3+ model
with NDVI-GB input channels provided an overall accuracy of 0.8089, which was slightly better than
DeepLabV3+ model accuracy with RGB channels but lower than our CNN model’s accuracy. Similar
trends were also observed in the second Kimisala test dataset that has a 10 cm resolution (Kimisala-10).
The detection results for the NDVI-ML method are found to be better than DeepLabV3+ and our
customized CNN model for both Kimisala test datasets. For the Kimisala-20 cm test dataset, NDVI-ML
provided an accuracy of 0.8578 which was considerably higher than the two deep learning methods.

NDVI-ML method performed considerably better than the investigated deep learning methods
for vegetation detection and does not need any training data. However, NDVI-ML consists of several
rules and thresholds that need to be selected properly by the user and the parameters and thresholds
used in these rules might most likely need to be revisited for another test image other than Kimisala
test data. NDVI-ML also focuses on vegetation detection as a binary classification problem (vegetation
vs. non-vegetation) since it depends on NDVI for detecting candidate vegetation pixels in its first step
whereas in the deep learning-based methods there is the flexibility to classify different vegetation types
(such as a tree, shrub, and grass). Among the two deep learning methods, DeepLabV3+, provided
extremely good detection performance using only RGB images without the NIR band showing that for
low-budget land cover classification applications using drones with low-cost onboard RGB cameras,
DeepLabV3+ could certainly be a viable method.

Comparing the deep learning and NDVI-based approaches, we observe that the NDVI-ML
method provided significantly better results than the two deep learning methods. This may look
surprising because normally people would expect deep learning methods to perform better than
conventional techniques. However, a close look at the results and images reveal that these findings
are actually reasonable from two perspectives. First, for deep learning methods to work well, a large
amount of training data is necessary. Otherwise, the performance will not be good. Second, for deep
learning methods to work decently, it is better for the training and testing images to have a close
resemblance. However, in our case, the training and testing images are somewhat different even if
they were captured by the same camera system as can be seen from Figure 13, making the vegetation
classification challenging for deep learning methods. In our recent study [5], we observed more serious
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detection performance drops with DeepLabV3+ when training and testing datasets had different image
resolutions, and the camera systems that captured these images were different.
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Another limitation of DeepLabV3+ is that it accepts only three input channels and requires
architecture modifications when more than three channels are aimed to be used. Even if these
modifications are done properly, the training will have to start from scratch since there are no
pre-trained DeepLabV3+ models other than RGB input channels. Moreover, one needs to find a
significant number of training images that contain all these additional input channels. This may not be
practical since the existing RGB pre-trained model utilized thousands, if not millions, of RGB images
in the training process. Our customized CNN method, on the other hand, can handle more than
three channels; however, the training needs to start from scratch since there are no pre-trained models
available for the NIR band.

One other challenge with deep learning methods is when the dataset is imbalanced. With heavily
imbalanced datasets, the error from the overrepresented classes contributes much more to the loss
value than the error contribution from the underrepresented classes. This makes the deep learning
method’s loss function to be biased toward the overrepresented classes resulting in poor classification
performance for the underrepresented classes [50]. One should also pay attention when applying deep
learning methods to new applications because one requirement for deep learning is the availability of
a vast amount of training data. Moreover, the training data needs to have similar characteristics as the
testing data. Otherwise, deep learning methods may not yield good performance. Augmenting the
training dataset using different brightness levels, adding vertically and horizontally flipped versions,
shifting, rotating, or adding noisy versions of the training images could be potential strategies to
mitigate the issues when test data characteristics differ from the training data.

5. Conclusions

In this paper, we investigated the performance of three methods for vegetation detection. Two of
these methods are based on deep learning and another one is an object-based method that utilizes
NDVI, computer vision, and machine learning techniques. Experimental results showed that the
DeepLabV3+ model that used the RGB bands performed reasonably well. However, it is challenging to
extend that model to include the NIR band in addition to the three RGB bands. When the NDVI band
is replaced with the red band to enable the use of all four input channels to some extent while fulfilling
DeepLabV3+’s three input channels only restriction, we noticed some slight detection improvements;
yet, this is not fully equivalent to using all four bands at once. In contrast to DeepLabV3+, our
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customized CNN model can be easily adapted to use RBG+NIR bands. With our customized CNN
model, slightly better results than DeepLabV3+ were obtained for the Kimisala-20 dataset when RGB
and NIR bands were used. Overall, we found the NDVI-ML approach to perform better than both
two deep learning models. We anticipate that the reason is that the training data and testing data are
different in appearance making it challenging for deep learning methods. In contrast, NDVI-ML does
not require any training data and may be more practical in real-world applications. However, NDVI-ML
is not applicable to situations where the NIR band is not available and might need special care when
choosing optimal parameters that might vary for different test images with different resolutions. Even
though vegetation detection with a reasonable level of accuracy is possible with DeepLabV3+ using
RGB bands only, one of the future research directions would be the customization of the DeepLabV3+

framework to accept more than three channels so that the NIR band can be used together with the
three color channels, RGB. Another direction would be using augmentation techniques with deep
learning methods to diversify the training data so that more robust responses can be obtained when
the test data characteristics considerably differ from training data.
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