Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/19280
Τίτλος: Image annotation: the effects of content, lexicon and annotation method
Συγγραφείς: Theodosiou, Zenonas 
Tsapatsoulis, Nicolas 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Annotation quality;Crowdsourcing;Image annotation;Manual annotation
Ημερομηνία Έκδοσης: Σεπ-2020
Πηγή: International Journal of Multimedia Information Retrieval, 2020, vol. 9, no. 3, pp. 191–203
Volume: 9
Issue: 3
Start page: 191
End page: 203
Περιοδικό: International Journal of Multimedia Information Retrieval 
Περίληψη: Image annotation is the process of assigning metadata to images, allowing effective retrieval by text-based search techniques. Despite the lots of efforts in automatic multimedia analysis, automatic semantic annotation of multimedia is still inefficient due to the problems in modeling high-level semantic terms. In this paper, we examine the factors affecting the quality of annotations collected through crowdsourcing platforms. An image dataset was manually annotated utilizing: (1) a vocabulary consists of preselected set of keywords, (2) an hierarchical vocabulary and (3) free keywords. The results show that the annotation quality is affected by the image content itself and the used lexicon. As we expected while annotation using the hierarchical vocabulary is more representative, the use of free keywords leads to increased invalid annotation. Finally, it is shown that images requiring annotations that are not directly related to their content (i.e., annotation using abstract concepts) lead to accrue annotator inconsistency revealing in that way the difficulty in annotating such kind of images is not limited to automatic annotation, but it is a generic problem of annotation.
URI: https://hdl.handle.net/20.500.14279/19280
ISSN: 2192662X
DOI: 10.1007/s13735-020-00193-z
Rights: © Springer
Type: Article
Affiliation: Research Center on Interactive Media, Smart Systems and Emerging Technologies 
Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

5
checked on 6 Νοε 2023

WEB OF SCIENCETM
Citations

3
Last Week
0
Last month
1
checked on 29 Οκτ 2023

Page view(s) 50

335
Last Week
2
Last month
9
checked on 22 Δεκ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons