Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/18561
Τίτλος: DepthLearn: Learning to correct the refraction on point clouds derived from aerial imagery for accurate dense shallow water bathymetry based on SVMs-fusion with LiDAR point clouds
Συγγραφείς: Agrafiotis, Panagiotis 
Skarlatos, Dimitrios 
Georgopoulos, Andreas 
Karantzalos, Konstantinos 
Major Field of Science: Engineering and Technology
Field Category: Civil Engineering
Λέξεις-κλειδιά: Point cloud;Bathymetry;SVM;Machine learning;UAV;Aerial imagery;Seabed mapping;Refraction effect;LiDAR;Fusion;Data integration
Ημερομηνία Έκδοσης: 1-Οκτ-2019
Πηγή: Remote Sensing, 2019, vol. 11, no. 19, articl. no. 2225
Volume: 11
Issue: 19
Περιοδικό: Remote Sensing 
Περίληψη: The determination of accurate bathymetric information is a key element for near offshore activities; hydrological studies, such as coastal engineering applications, sedimentary processes, hydrographic surveying, archaeological mapping and biological research. Through structure from motion (SfM) and multi-view-stereo (MVS) techniques, aerial imagery can provide a low-cost alternative compared to bathymetric LiDAR (Light Detection and Ranging) surveys, as it offers additional important visual information and higher spatial resolution. Nevertheless, water refraction poses significant challenges on depth determination. Till now, this problem has been addressed through customized image-based refraction correction algorithms or by modifying the collinearity equation. In this article, in order to overcome the water refraction errors in a massive and accurate way, we employ machine learning tools, which are able to learn the systematic underestimation of the estimated depths. In particular, an SVR (support vector regression) model was developed, based on known depth observations from bathymetric LiDAR surveys, which is able to accurately recover bathymetry from point clouds derived from SfM-MVS procedures. Experimental results and validation were based on datasets derived from different test-sites, and demonstrated the high potential of our approach. Moreover, we exploited the fusion of LiDAR and image-based point clouds towards addressing challenges of both modalities in problematic areas.
URI: https://hdl.handle.net/20.500.14279/18561
ISSN: 20724292
DOI: 10.3390/rs11192225
Rights: © by the authors.
Attribution-NonCommercial-NoDerivs 3.0 United States
Type: Article
Affiliation: National Technical University Of Athens 
Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
remotesensing-11-02225.pdfFulltext7.31 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

28
checked on 14 Μαρ 2024

WEB OF SCIENCETM
Citations

22
Last Week
0
Last month
1
checked on 29 Οκτ 2023

Page view(s)

334
Last Week
0
Last month
27
checked on 14 Μαρ 2025

Download(s)

240
checked on 14 Μαρ 2025

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons