Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/18561
Πεδίο DC | Τιμή | Γλώσσα |
---|---|---|
dc.contributor.author | Agrafiotis, Panagiotis | - |
dc.contributor.author | Skarlatos, Dimitrios | - |
dc.contributor.author | Georgopoulos, Andreas | - |
dc.contributor.author | Karantzalos, Konstantinos | - |
dc.date.accessioned | 2020-07-23T11:19:55Z | - |
dc.date.available | 2020-07-23T11:19:55Z | - |
dc.date.issued | 2019-10-01 | - |
dc.identifier.citation | Remote Sensing, 2019, vol. 11, no. 19, articl. no. 2225 | en_US |
dc.identifier.issn | 20724292 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/18561 | - |
dc.description.abstract | The determination of accurate bathymetric information is a key element for near offshore activities; hydrological studies, such as coastal engineering applications, sedimentary processes, hydrographic surveying, archaeological mapping and biological research. Through structure from motion (SfM) and multi-view-stereo (MVS) techniques, aerial imagery can provide a low-cost alternative compared to bathymetric LiDAR (Light Detection and Ranging) surveys, as it offers additional important visual information and higher spatial resolution. Nevertheless, water refraction poses significant challenges on depth determination. Till now, this problem has been addressed through customized image-based refraction correction algorithms or by modifying the collinearity equation. In this article, in order to overcome the water refraction errors in a massive and accurate way, we employ machine learning tools, which are able to learn the systematic underestimation of the estimated depths. In particular, an SVR (support vector regression) model was developed, based on known depth observations from bathymetric LiDAR surveys, which is able to accurately recover bathymetry from point clouds derived from SfM-MVS procedures. Experimental results and validation were based on datasets derived from different test-sites, and demonstrated the high potential of our approach. Moreover, we exploited the fusion of LiDAR and image-based point clouds towards addressing challenges of both modalities in problematic areas. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | Remote Sensing | en_US |
dc.rights | © by the authors. | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Point cloud | en_US |
dc.subject | Bathymetry | en_US |
dc.subject | SVM | en_US |
dc.subject | Machine learning | en_US |
dc.subject | UAV | en_US |
dc.subject | Aerial imagery | en_US |
dc.subject | Seabed mapping | en_US |
dc.subject | Refraction effect | en_US |
dc.subject | LiDAR | en_US |
dc.subject | Fusion | en_US |
dc.subject | Data integration | en_US |
dc.title | DepthLearn: Learning to correct the refraction on point clouds derived from aerial imagery for accurate dense shallow water bathymetry based on SVMs-fusion with LiDAR point clouds | en_US |
dc.type | Article | en_US |
dc.collaboration | National Technical University Of Athens | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.subject.category | Civil Engineering | en_US |
dc.journals | Open Access | en_US |
dc.country | Greece | en_US |
dc.country | Cyprus | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.3390/rs11192225 | en_US |
dc.identifier.scopus | 2-s2.0-85073429435 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85073429435 | - |
dc.relation.issue | 19 | en_US |
dc.relation.volume | 11 | en_US |
cut.common.academicyear | 2019-2020 | en_US |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
crisitem.journal.journalissn | 2072-4292 | - |
crisitem.journal.publisher | MDPI | - |
crisitem.author.dept | Department of Civil Engineering and Geomatics | - |
crisitem.author.dept | Department of Civil Engineering and Geomatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0003-4474-5007 | - |
crisitem.author.orcid | 0000-0002-2732-4780 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
remotesensing-11-02225.pdf | Fulltext | 7.31 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
SCOPUSTM
Citations
28
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
22
Last Week
0
0
Last month
1
1
checked on 29 Οκτ 2023
Page view(s)
334
Last Week
0
0
Last month
27
27
checked on 14 Μαρ 2025
Download(s)
240
checked on 14 Μαρ 2025
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons