Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/1694
Τίτλος: A numerical and experimental investigation of the flow acceleration region proximal to an orifice
Συγγραφείς: Perry, Gilbert J. 
Myers, Jerry G. 
Anayiotos, Andreas 
metadata.dc.contributor.other: Αναγιωτός, Ανδρέας
Major Field of Science: Medical and Health Sciences
Λέξεις-κλειδιά: Echocardiography;Ultrasonic imaging;Hemodynamics;Computer simulation;Blood flow Measurement
Ημερομηνία Έκδοσης: 1995
Πηγή: Ultrasound in Medicine and Biology, 1995, vol. 21, no. 4, pp. 501-516
Volume: 21
Issue: 4
Start page: 501
End page: 516
Περιοδικό: Ultrasound in Medicine and Biology 
Περίληψη: ttempts to quantify valvular regurgitation have recently been focused on the proximal orifice flow field. A complete description of the proximal orifice flow field is provided in this investigation. A steady state in vitro model accessible by both color Doppler ultrasound (CDU) and laser Doppler velocimetry (LDV) was utilized. Velocities for varying flow rates and orifices were calculated by finite element modeling (FEM), by LDV and by CDU. The steady flow model was composed of circular orifices of 3, 5 and 10 mm diameters at flow rates from 0.7 to 10 L/min. Regurgitant flow rates were calculated from the proximal CDU data by two separate methods. The first approach utilized angle corrected velocities while the second approach utilized only velocities which did not require angle correction (centerline velocities). Both methods correlated well with known flow rates (y = 0.97x - 0.09, r = 0.98, SEE = 0.45, p < 0.0001; and y = 1.0x + 0.07, r = 0.99, SEE = 0.27, p < 0.0001, respectively) and were superior to results obtained by assuming a hemispherical geometry as is done in the aliasing technique. The methodology provides a complete analysis of the proximal flow field and involves fewer geometric assumptions than the aliasing approach. This may prove to be an advantage when analyzing in vivo flow fields with complex, uncertain geometry. Attempts to quantify valvular regurgitation have recently been focused on the proximal orifice flow field. This paper provides a complete description of this proximal orifice flow field. A steady state in vitro model accessible by both color Doppler ultrasound (CDU) and laser Doppler velocimetry (LDV) was utilized. Velocities for varying flow rates and orifices were calculated by finite element modeling (FEM), by LDV and by CDU.
URI: https://hdl.handle.net/20.500.14279/1694
ISSN: 03015629
DOI: 10.1016/0301-5629(94)00141-Y
Rights: © Elsevier
Type: Article
Affiliation: University of Alabama at Birmingham 
Affiliation: University of Alabama at Birmingham 
Birmingham Veteran's Administration Medical Center 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

29
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations 50

22
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

532
Last Week
0
Last month
30
checked on 13 Μαρ 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα